Patents by Inventor John F. Rembetski

John F. Rembetski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10418443
    Abstract: A platform for trapping atomic ions includes a substrate and a plurality of metallization layers that overlie the substrate. The metallization layer farthest from the substrate is a top layer patterned with electrostatic control trap electrodes and radio-frequency trap electrodes. Another metallization layer is a microwave layer patterned to define a microwave circuit. The microwave layer lies below the top layer. The microwave circuit is adapted to generate, in use, a microwave magnetic field above the electrostatic control and radio-frequency trap electrodes. The top metallization layer includes slots that, in use, are penetrated by microwave energy from the microwave circuit.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: September 17, 2019
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Christopher Nordquist, Christopher W. Berry, Peter Lukas Wilhelm Maunz, Matthew G. Blain, Jonathan David Sterk, Paul J. Resnick, John F. Rembetski
  • Patent number: 5618379
    Abstract: Disclosed is a process for depositing a conformal polymer coating on selected areas of a silicon substrate. The substrate is first exposed through a mask to a gaseous plasma so as to form a film of desired pattern, the plasma comprising a compound having strong electron donating characteristics. Then, the patterned film and the remaining substrate not covered by the film are exposed to the vapor of a monomer, which condenses and polymerizes on the exposed substrate surfaces, but not on the film. The film serves to inhibit substantial deposition of the coating, so as to provide a selective deposition, where the coating is formed only on those areas of the substrate where desired.
    Type: Grant
    Filed: April 1, 1991
    Date of Patent: April 8, 1997
    Assignee: International Business Machines Corporation
    Inventors: Michael D. Armacost, Steven A. Grundon, David L. Harmon, Son V. Nguyen, John F. Rembetski
  • Patent number: 5466636
    Abstract: A semiconductor fabrication process for forming borderless contacts (130, 170, 172) using a removable mandrel (110). The process involves depositing a mandrel on an underlying barrier layer (100) designed to protect underlying structures (40) formed on a substrate (24). The mandrel is made from a material that will etch at a faster rate than the barrier layer so as to permit the formation of openings in the mandrel to be stopped on the barrier layer without penetrating such layer. After depositing a contact (130) in a first opening (120) formed in the mandrel, a second opening (140) is formed and a second contact (170) is deposited therein. Thereafter, the mandrel is removed and replaced with a layer of solid dielectric material (180).
    Type: Grant
    Filed: September 17, 1992
    Date of Patent: November 14, 1995
    Assignee: International Business Machines Corporation
    Inventors: John E. Cronin, Carter W. Kaanta, Donald M. Kenney, Michael L. Kerbaugh, Howard S. Landis, Brian J. Machesney, Paul Parries, Rosemary A. Previti-Kelly, John F. Rembetski
  • Patent number: 5298790
    Abstract: An improved mask and method of forming a deep and width trench in a substrate and the resulting structure is disclosed. A substrate material such as silicon has deposited thereon a first layer of sacrificial material as a first component of an etch mask, the sacrificial material being a material such as polysilicon that is either etched by or absorbs the same ions which reactively ion etch the substrate. A second layer of material, which resists reactive ion etching, such as silicon dioxide, is deposited over the first layer of material as a second component of the etch mask. The silicon dioxide is patterned in the form of the trench to be formed in the substrate. The layer polysilicon material is then reactive ion etched and the reactive ion etching continued to form a trench in the silicon substrate. The polysilicon acts as a sacrificial material being etched by any ions that are reflected from the silicon dioxide or are directed at an angle such that they strike the layer of polysilicon material.
    Type: Grant
    Filed: October 8, 1992
    Date of Patent: March 29, 1994
    Assignee: International Business Machines Corporation
    Inventors: David L. Harmon, Michael L. Kerbaugh, Nancy T. Pascoe, John F. Rembetski
  • Patent number: 5118384
    Abstract: An improved mask and method of forming a deep and uniform width trench in a substrate and the resulting structure is disclosed. A substrate material such as silicon has deposited thereon a first layer of sacrificial material as a first component of an etch mask, the sacrificial material being a material such as polysilicon that is either etched by or absorbs the same ions which reactively ion etch the substrate. A second layer of material, which resists reactive ion etching, such as silicon dioxide, is deposited over the first layer of material as a second component of the etch mask. The silicon dioxide is patterned in the form of the trench to be formed in the substrate. The layer polysilicon material is then reactive ion etched and the reactive ion etching continued to form a trench in the silicon substrate. The polysilicon acts as a sacrificial material being etched by any ions that are reflected from the silicon dioxide or are directed at an angle such that they strike the layer of polysilicon material.
    Type: Grant
    Filed: December 10, 1991
    Date of Patent: June 2, 1992
    Assignee: International Business Machines Corporation
    Inventors: David L. Harmon, Michael L. Kerbaugh, Nancy T. Pascoe, John F. Rembetski
  • Patent number: 5053104
    Abstract: A plasma etching process is disclosed wherein the substrate to be etched is first exposed to an etchant gas containing a volatile organohalide. When the etch rate is stabilized, the organohalide in the etchant gas is replaced by oxygen whereby the etch rate of the substrate is immediately increased to a substantially higher value. When the above is repeatedly done a substantially higher average etch rate is obtained.
    Type: Grant
    Filed: November 29, 1989
    Date of Patent: October 1, 1991
    Assignee: International Business Machines Corporation
    Inventors: Suryadevara V. Babu, Joseph G. Hoffarth, Allan R. Knoll, Walter E. Mlynko, John F. Rembetski, Kenneth D. Mack