Patents by Inventor John F. Schabron

John F. Schabron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10994252
    Abstract: In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: May 4, 2021
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani
  • Patent number: 10808183
    Abstract: The inventive technology, in at least one embodiment, may be described as a method of destabilizing an aqueous hydrocarbon emulsion comprising the steps of: effecting contact between a sorbent and said aqueous hydrocarbon emulsion; effecting relative motion between said sorbent and said aqueous hydrocarbon emulsion; and destabilizing (perhaps in continuous fashion) the aqueous hydrocarbon emulsion. Applications include but are not limited to oil spill clean up, manufacturing of emulsions, oil refinery and production operations (anywhere along the production chain).
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: October 20, 2020
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Jeramie J. Adams, Joseph F. Rovani, Jean-Pascal Planche
  • Publication number: 20200088709
    Abstract: At least one embodiment of the inventive technology may be described as a method for analyzing a hydrocarbon that comprises volatiles, said method comprising the steps of: segregating said volatiles from said hydrocarbon without oxidizing said hydrocarbon; generating a hydrocarbon residue and segregated hydrocarbon volatiles; and analyzing at least one of said hydrocarbon residue and said segregated hydrocarbon volatiles. The advantageous avoidance of oxidation may be achieved by placing the hydrocarbon under a vacuum, which may also enable the avoidance of cracking of the hydrocarbon while still achieving segregation of volatiles as desired. One other of the several embodiments disclosed and claimed herein may focus more on vacuum transfer and vacuum distillation of hydrocarbon volatiles. These and other methods disclosed herein may be used to achieve improved hydrocarbon analysis results.
    Type: Application
    Filed: November 25, 2019
    Publication date: March 19, 2020
    Inventors: Jeramie J. Adams, John F. Schabron
  • Publication number: 20190299180
    Abstract: At least one embodiment of the inventive technology may involve the intentional changing of the stability of an emulsion from a first stability to a more desired, second stability upon the addition of a more aromatic asphaltene subfraction (perhaps even a most aromatic asphaltene subfraction), or a less aromatic asphaltene subfraction (perhaps even a least aromatic asphaltene subfraction) to a emulsion hydrocarbon of an oil emulsion, thereby increasing emulsion stability or decreasing emulsion stability, respectively. Precipitation and redissolution or sorbent-based techniques may be used to isolate a selected an asphaltene subfraction before its addition to an emulsion hydrocarbon when that hydrocarbon is part of an emulsion or an ingredient of a yet-to-be-formed emulsion.
    Type: Application
    Filed: November 22, 2016
    Publication date: October 3, 2019
    Inventors: John F. Schabron, Jeramie J. Adams, Joseph F. Rovani, JR., Jean-Pascal Planche
  • Publication number: 20190211272
    Abstract: A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. In at least one embodiment, it involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter that is higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Inventors: John F. Schabron, Joseph F. Rovani, JR., Jean-Pascal Planche
  • Publication number: 20190209988
    Abstract: In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.
    Type: Application
    Filed: March 19, 2019
    Publication date: July 11, 2019
    Inventors: John F. Schabron, Joseph F. Rovani
  • Patent number: 10221363
    Abstract: The inventive technology may involve, in particular embodiments, novel use of a non-porous, high surface energy stationary phase to adsorb, in reversible fashion, the most polar component of a resins fraction of an input hydrocarbon when a mobile phase is passed over the stationary phase. Such reversible adsorption prevents irreversibly adsorption of such components on active stationary phase(s) downflow of the non-porous, high surface energy stationary phase, thereby conserving stationary phase costs and increasing resolution of resins elutions, and accuracy of hydrocarbon component results. Aspects of the inventive technology may also involve a novel combination of a solubility based asphaltene component fractionating and analysis method and an adsorption chromatography method for separating and/or analyzing saturate, aromatics and resins components of an input hydrocarbon.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: March 5, 2019
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Ryan B. Boysen, Eric W. Kalberer, Joseph F. Rovani, Jr.
  • Publication number: 20170072376
    Abstract: At least one embodiment of the inventive technology may involve the intentional changing of the stability of an emulsion from a first stability to a more desired, second stability upon the addition of a more aromatic asphaltene subfraction (perhaps even a most aromatic asphaltene subfraction), or a less aromatic asphaltene subfraction (perhaps even a least aromatic asphaltene subfraction) to a emulsion hydrocarbon of an oil emulsion, thereby increasing emulsion stability or decreasing emulsion stability, respectively. Precipitation and redissolution or sorbent-based techniques may be used to isolate a selected an asphaltene subfraction before its addition to an emulsion hydrocarbon when that hydrocarbon is part of an emulsion or an ingredient of a yet-to-be-formed emulsion.
    Type: Application
    Filed: November 22, 2016
    Publication date: March 16, 2017
    Inventors: John F. Schabron, Jeramie J. Adams, Joseph F. Rovani, JR., Jean-Pascal Planche
  • Publication number: 20170003264
    Abstract: At least one embodiment of the inventive technology may be described as a method for analyzing a hydrocarbon that comprises volatiles, said method comprising the steps of: segregating said volatiles from said hydrocarbon without oxidizing said hydrocarbon; generating a hydrocarbon residue and segregated hydrocarbon volatiles; and analyzing at least one of said hydrocarbon residue and said segregated hydrocarbon volatiles. The advantageous avoidance of oxidation may be achieved by placing the hydrocarbon under a vacuum, which may also enable the avoidance of cracking of the hydrocarbon while still achieving segregation of volatiles as desired. One other of the several embodiments disclosed and claimed herein may focus more on vacuum transfer and vacuum distillation of hydrocarbon volatiles. These and other methods disclosed herein may be used to achieve improved hydrocarbon analysis results.
    Type: Application
    Filed: January 24, 2014
    Publication date: January 5, 2017
    Inventors: Jeramie J. Adams, John F. Schabron
  • Patent number: 9458389
    Abstract: Disclosed herein is a method of estimating a property of a hydrocarbon comprising the steps of: preparing a liquid sample of a hydrocarbon, the hydrocarbon having asphaltene fractions therein; precipitating at least some of the asphaltenes of a hydrocarbon from the liquid sample with one or more precipitants in a chromatographic column; dissolving at least two of the different asphaltene fractions from the precipitated asphaltenes during a successive dissolution protocol; eluting the at least two different dissolved asphaltene fractions from the chromatographic column; monitoring the amount of the fractions eluted from the chromatographic column; using detected signals to calculate a percentage of a peak area for a first of the asphaltene fractions and a peak area for a second of the asphaltene fractions relative to the total peak areas, to determine a parameter that relates to the property of the hydrocarbon; and estimating the property of the hydrocarbon.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: October 4, 2016
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.
  • Publication number: 20160272899
    Abstract: The inventive technology may involve, in particular embodiments, novel use of a non-porous, high surface energy stationary phase to adsorb, in reversible fashion, the most polar component of a resins fraction of an input hydrocarbon when a mobile phase is passed over the stationary phase. Such reversible adsorption prevents irreversibly adsorption of such components on active stationary phase(s) downflow of the non-porous, high surface energy stationary phase, thereby conserving stationary phase costs and increasing resolution of resins elutions, and accuracy of hydrocarbon component results. Aspects of the inventive technology may also involve a novel combination of a solubility based asphaltene component fractionating and analysis method and an adsorption chromatography method for separating and/or analyzing saturate, aromatics and resins components of an input hydrocarbon.
    Type: Application
    Filed: May 27, 2016
    Publication date: September 22, 2016
    Applicant: University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventors: John F. Schabron, Ryan B. Boysen, Eric W. Kalberer, Joseph F. Rovani, JR.
  • Patent number: 9353317
    Abstract: The inventive technology may involve, in particular embodiments, novel use of a non-porous, high surface energy stationary phase to adsorb, in reversible fashion, the most polar component of a resins fraction of an input hydrocarbon when a mobile phase is passed over the stationary phase. Such reversible adsorption prevents irreversibly adsorption of such components on active stationary phase(s) downflow of the non-porous, high surface energy stationary phase, thereby conserving stationary phase costs and increasing resolution of resins elutions, and accuracy of hydrocarbon component results. Aspects of the inventive technology may also involve a novel combination of a solubility based asphaltene component fractionating and analysis method and an adsorption chromatography method for separating and/or analyzing saturate, aromatics and resins components of an input hydrocarbon.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: May 31, 2016
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Ryan B. Boysen, Eric W. Kalberer, Joseph F. Rovani, Jr.
  • Publication number: 20150225655
    Abstract: The inventive technology, in at least one embodiment, may be described as a method of destabilizing an aqueous hydrocarbon emulsion comprising the steps of: effecting contact between a sorbent and said aqueous hydrocarbon emulsion; effecting relative motion between said sorbent and said aqueous hydrocarbon emulsion; and destabilizing (perhaps in continuous fashion) the aqueous hydrocarbon emulsion. Applications include but are not limited to oil spill clean up, manufacturing of emulsions, oil refinery and production operations (anywhere along the production chain).
    Type: Application
    Filed: September 12, 2013
    Publication date: August 13, 2015
    Applicant: The University of Wyoming Research Corpoation d/b/a Western Research Institute
    Inventors: Jeramie J. Adams, Jean-Pascal Planche, Joseph F. Rovani, John F. Schabron
  • Publication number: 20150218461
    Abstract: At least one embodiment of the inventive technology may involve the intentional changing of the stability of an emulsion from a first stability to a more desired, second stability upon the addition of a more aromatic asphaltene subfraction (perhaps even a most aromatic asphaltene subfraction), or a less aromatic asphaltene subfraction (perhaps even a least aromatic asphaltene subfraction) to a emulsion hydrocarbon of an oil emulsion, thereby increasing emulsion stability or decreasing emulsion stability, respectively. Precipitation and redissolution or sorbent-based techniques may be used to isolate a selected asphaltene subfraction before its addition to an emulsion hydrocarbon when that hydrocarbon is part of an emulsion or an ingredient of a yet-to-be-formed emulsion.
    Type: Application
    Filed: December 20, 2012
    Publication date: August 6, 2015
    Applicant: The University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventors: John F. Schabron, Jeramie J. Adams, Joseph F. Rovani, JR., Jean-Pascal Planche
  • Patent number: 8904810
    Abstract: Embodiments of the inventive technology may involve the use of layered, insulated PCM assemblage that itself comprises: modular insulating foam material 8 that, upon establishment as part of the assemblage, defines inner foam material sides 9 and outer foam material sides 10; thin reflective material 11 established against (whether directly in contact with or not) at least either the inner foam material sides or the outer foam materials sides, and modular, enclosed PCM sections 12 established between the modular insulating foam material and the interior center.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 9, 2014
    Assignee: University of Wyoming Research Corporation
    Inventors: John F. Schabron, Greg Wong
  • Publication number: 20140021101
    Abstract: In accordance with particular descriptions provided herein, certain embodiments of the inventive technology may be described as a hydrocarbon viscosity reduction method that comprises the steps of: treating a hydrocarbon having asphaltenes therein to generate a treated hydrocarbon, wherein said hydrocarbon has a first viscosity; contacting said treated hydrocarbon with a sorbent (whether as a result of pouring or other means); and adsorbing at least a portion of said asphaltenes onto said sorbent, thereby removing said at least a portion of said asphaltenes from said hydrocarbon so as to generate a viscosity reduced hydrocarbon having a second viscosity that is lower than said first viscosity.
    Type: Application
    Filed: January 13, 2012
    Publication date: January 23, 2014
    Applicant: The University of Wyoming Research Corporation d/b/a Western Research Institute
    Inventors: John F. Schabron, Joseph F. Rovani, JR.
  • Patent number: 8628970
    Abstract: Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: January 14, 2014
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.
  • Patent number: 8530240
    Abstract: Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: September 10, 2013
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.
  • Patent number: 8525114
    Abstract: The present invention may include methods and apparatus for the detection of explosives using near infrared or infrared spectroscopy to detect nitro or even carbonyl groups. Embodiments may include, at least one radiation emitter may emit at least one wavelength towards a target. At least one reflected wavelength may be generated after the wavelength collides with the target. A reflected wavelength may then be detected by at least one detector and analyzed with an analyzer.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: September 3, 2013
    Assignee: University of Wyoming Research Corporation
    Inventor: John F. Schabron
  • Patent number: 8492154
    Abstract: Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 23, 2013
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr.