Patents by Inventor John F. Thompson

John F. Thompson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10520938
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 31, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10520953
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to access power level data corresponding to each of the multiple UAVs, and select a second UAV of the multiple UAVs based at least in part on a power level of the second UAV relative to a threshold power level corresponding to a first task to be performed and a predicted power usage by the second UAV while utilizing a first tool system temporarily cooperated with the second UAV in performing the first task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: December 31, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10514691
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10507918
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: December 17, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10423169
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: September 24, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227541
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227542
    Abstract: In some embodiments, unmanned task systems are provided that comprise multiple unmanned vehicles each comprising: a control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective unmanned vehicles to move themselves; and wherein a first control circuit of a first unmanned vehicle of the multiple unmanned vehicles is configured to identify a second unmanned vehicle carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second unmanned vehicle directing the second unmanned vehicle to transfer the first tool system to the first unmanned vehicle, and direct a first propulsion system of the first unmanned vehicle to couple with the first tool system being transferred from the second unmanned vehicle.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190227554
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20190210725
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: control the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: March 13, 2019
    Publication date: July 11, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20190193853
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Application
    Filed: February 28, 2019
    Publication date: June 27, 2019
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Patent number: 10301629
    Abstract: Embodiments disclosed herein provide compositions for conjugates, including fusion proteins, and methods of using them to treat a variety of conditions. In some embodiments, the conjugates and/or fusion proteins incorporate a 60-amino acid human homeodomain (e.g., peptides derived from human HOX genes), to translocate functional and regulatory peptides and proteins or other biologically active molecules such as nucleic acids, which are not naturally associated with the human homeodomain, across cell and nuclear membranes to intended sites of action without provoking an unwanted immune response that may reduce exposure to the conjugate and/or result in a clinical adverse event. In further embodiments, disclosed conjugates and fusion proteins can pass through the blood-brain barrier to allow entry into the CNS.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: May 28, 2019
    Assignee: PORTAGE PHARMACEUTICALS LTD.
    Inventors: Bruce H. Littman, John F. Thompson, Frank W. Marcoux
  • Publication number: 20190153450
    Abstract: Embodiments disclosed herein provide compositions for conjugates, including fusion proteins, and methods of using them to treat a variety of conditions. In some embodiments, the conjugates and/or fusion proteins incorporate a 60-amino acid human homeodomain (e.g., peptides derived from human HOX genes), to translocate functional and regulatory peptides and proteins or other biologically active molecules such as nucleic acids, which are not naturally associated with the human homeodomain, across cell and nuclear membranes to intended sites of action without provoking an unwanted immune response that may reduce exposure to the conjugate and/or result in a clinical adverse event. In further embodiments, disclosed conjugates and fusion proteins can pass through the blood-brain barrier to allow entry into the CNS.
    Type: Application
    Filed: February 6, 2019
    Publication date: May 23, 2019
    Inventors: Bruce H. Littman, John F. Thompson, Frank W. Marcoux
  • Patent number: 10295724
    Abstract: This application describes a back-lit transmissive display including a transmissive display and a variable index light extraction layer optically coupled to a lightguide. The variable index light extraction layer has first regions of nanovoided polymeric material and second regions of the nanovoided polymeric material and an additional material. The first and second regions are disposed such that for light being transported at a supercritical angle in the lightguide, the variable index light extraction layer selectively extracts the light in a predetermined way based on the geometric arrangement of the first and second regions. The transmissive display may be a transmissive display panel or a polymeric film such as a graphic.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 21, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: David Scott Thompson, Kevin R. Schaffer, Zhaohui Yang, Encai Hao, Audrey A. Sherman, Michael A. Meis, John A. Wheatley, Matthew S. Stay, Robert F. Kamrath, Mikhail L. Pekurovsky, Steven D. Solomonson
  • Patent number: 10296005
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: May 21, 2019
    Assignee: Walmart Apollo, LLC
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20160136293
    Abstract: Embodiments disclosed herein provide compositions for conjugates, including fusion proteins, and methods of using them to treat a variety of conditions. In some embodiments, the conjugates and/or fusion proteins incorporate a 60-amino acid human homeodomain (e.g., peptides derived from human HOX genes), to translocate functional and regulatory peptides and proteins or other biologically active molecules such as nucleic acids, which are not naturally associated with the human homeodomain, across cell and nuclear membranes to intended sites of action without provoking an unwanted immune response that may reduce exposure to the conjugate and/or result in a clinical adverse event. In further embodiments, disclosed conjugates and fusion proteins can pass through the blood-brain barrier to allow entry into the CNS.
    Type: Application
    Filed: June 11, 2014
    Publication date: May 19, 2016
    Inventors: Bruce H. Littman, John F. Thompson, Frank W. Marcoux
  • Publication number: 20140322709
    Abstract: The invention generally relates to methods for detecting fetal nucleic acids and methods for diagnosing fetal abnormalities. In certain embodiments, the invention provides methods for determining whether fetal nucleic acid is present in a maternal sample including obtaining a maternal sample suspected to include fetal nucleic acids, and performing a sequencing reaction on the sample to determine presence of at least a portion of a Y chromosome in the sample, thereby determining that fetal nucleic acid is present in the sample. In other embodiments, the invention provides methods for quantitative or qualitative analysis to detect fetal nucleic acid in a maternal sample, regardless of the ability to detect the Y chromosome, particularly for samples including normal nucleic acids from a female fetus.
    Type: Application
    Filed: February 24, 2014
    Publication date: October 30, 2014
    Applicant: Sequenom, Inc.
    Inventors: Stanley N. Lapidus, John F. Thompson, Doron Lipson, Patrice Milos, J. William Efcavitch, Stanley Letovsky
  • Publication number: 20130196317
    Abstract: The invention generally relates to methods for detecting fetal nucleic acids and methods for diagnosing fetal abnormalities. In certain embodiments, the invention provides methods for determining whether fetal nucleic acid is present in a maternal sample including obtaining a maternal sample suspected to include fetal nucleic acids, and performing a sequencing reaction on the sample to determine presence of at least a portion of a Y chromosome in the sample, thereby determining that fetal nucleic acid is present in the sample. In other embodiments, the invention provides methods for quantitative or qualitative analysis to detect fetal nucleic acid in a maternal sample, regardless of the ability to detect the Y chromosome, particularly for samples including normal nucleic acids from a female fetus.
    Type: Application
    Filed: September 13, 2012
    Publication date: August 1, 2013
    Applicant: SEQUENOM, INC
    Inventors: Stanley N. Lapidus, John F. Thompson, Doron Lipson, Patrice Milos, J. William Efcavitch, Stanley Letovsky
  • Publication number: 20130022977
    Abstract: The invention generally relates to methods for detecting fetal nucleic acids and methods for diagnosing fetal abnormalities. In certain embodiments, the invention provides methods for determining whether fetal nucleic acid is present in a maternal sample including obtaining a maternal sample suspected to include fetal nucleic acids, and performing a sequencing reaction on the sample to determine presence of at least a portion of a Y chromosome in the sample, thereby determining that fetal nucleic acid is present in the sample. In other embodiments, the invention provides methods for quantitative or qualitative analysis to detect fetal nucleic acid in a maternal sample, regardless of the ability to detect the Y chromosome, particularly for samples including normal nucleic acids from a female fetus.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 24, 2013
    Applicant: SEQUENOM, INC
    Inventors: Stanley Lapidus, John F. Thompson, Doron Lipson, Patrice Milos, J. William Efcavitch, Stanley Letovsky
  • Publication number: 20120028822
    Abstract: A method, flow cell and/or device for increasing the recovery of a limiting analyte in a sample, e.g., for single molecule analysis is disclosed. Methods for preparing a nucleic acid sample from a single cell and capturing nucleic acids on a surface configured for use in or with single molecule analysis are also provided.
    Type: Application
    Filed: November 4, 2009
    Publication date: February 2, 2012
    Applicant: HELICOS BIOSCIENCES CORPORATION
    Inventors: Richard Joseph, James Dimeo, Mirna Jarosz, John F. Thompson, Jayson Bowers, Scott Chouinard, Philipp Kapranov, William J. Efcavitch, Christopher Hart, Fatih Ozsolak
  • Publication number: 20110301042
    Abstract: The invention generally relates to methods for sequencing a plurality of nucleic acids from different samples. In certain embodiments, methods of the invention provide contacting a nucleic acid duplex including a primer nucleic acid hybridized to a template nucleic acid with a polymerase enzyme in the presence of a first detectably labeled nucleotide under conditions that permit the polymerase to add nucleotides to the primer in a template-dependent manner, in which a unique oligonucleotide sequence is attached to the template nucleic acid so that the template nucleic acid may be differentiated from other template nucleic acid molecules, detecting a signal from the incorporated labeled nucleotide, and sequentially repeating the contacting and detecting steps at least once, wherein sequential detection of incorporated labeled nucleotide determines the sequence of the nucleic acid.
    Type: Application
    Filed: November 11, 2009
    Publication date: December 8, 2011
    Applicant: HELICOS BIOSCIENCES CORPORATION
    Inventors: Kathleen Steinmann, Elaine Joseph, Marie Causey, John F. Thompson