Patents by Inventor John F. Walzer

John F. Walzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9879104
    Abstract: This invention relates to a process to using an aminopyridinate scandium or yttrium metal (typically scandium) catalyst compound to produce ethylene conjugated diene copolymers, preferably ethylene isoprene copolymers having: 1) from 75 to 90 mol % ethylene; 2) from 10 to 25 mol % isoprene; 3) a Tg of 0° C. or less; 4) 1,4 isomer present at 60 wt % or less; 5) 3,4 and 1,2 present at 40% or more; 6) Mn of 250,000 g/mol or less; and 7) optionally, a Tm of 100° C. or less.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: January 30, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John F. Walzer, Jr., Anna A. Michels, John R. Hagadorn, Sarah J. Mattler, Carlos R. Lopez-Barron, Anthony J. Dias
  • Publication number: 20160319057
    Abstract: This invention relates to a process to using an aminopyridinate scandium or yttrium metal (typically scandium) catalyst compound to produce ethylene conjugated diene copolymers, preferably ethylene isoprene copolymers having: 1) from 75 to 90 mol % ethylene; 2) from 10 to 25 mol % isoprene; 3) a Tg of 0° C. or less; 4) 1,4 isomer present at 60 wt % or less; 5) 3,4 and 1,2 present at 40% or more; 6) Mn of 250,000 g/mol or less; and 7) optionally, a Tm of 100° C. or less.
    Type: Application
    Filed: March 29, 2016
    Publication date: November 3, 2016
    Inventors: John F. Walzer, JR., Anna A. Michels, John R. Hagadorn, Sarah J. Mattler, Carlos R. Lopez-Barron, Anthony J. Dias
  • Patent number: 9409834
    Abstract: A low viscosity poly(apha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1, and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins and has a kinematic viscosity at 100° C. of 20 cSt or less.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 9, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang
  • Patent number: 9068033
    Abstract: This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g?(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: June 30, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David M. Fiscus, Laughlin G. McCullough, John F. Walzer, Jr., Jay L. Reimers
  • Publication number: 20140378720
    Abstract: A process to produce polyalpha-olefins includes contacting a feed stream of at least one alpha-olefin monomer having 4 to 25 carbon atoms with a metallocene catalyst compound and an activator, and optionally an alkyl-aluminum compound, under polymerizations conditions in a reactor. The alpha-olefin monomer is present at 10% volume or more in the reactor and the feed stream includes less than 600 ppm of heteroatom containing compounds. The process further includes obtaining a polyalpha-olefin with at least 50 mole % C5 to C24 alpha-olefin monomer and kinematic viscosity at 100° C. of 5000 cSt or less.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 25, 2014
    Inventors: Margaret M. Wu, Norman Yang, Lisa S. Baugh, Jo Ann M. Canich, Steven P. Rucker, John F. Walzer, JR., Gordon H. Lee, Frederick Y. Lo, Andrew Jackson, Mark P. Hagemeister, Shakeel Tirmizi, Peijun Jiang, Chia S. Chee
  • Publication number: 20140179872
    Abstract: This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g?(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.
    Type: Application
    Filed: November 26, 2013
    Publication date: June 26, 2014
    Inventors: David M. Fiscus, Laughlin G. McCullough, John F. Walzer, Jr., Jay L. Reimers
  • Patent number: 8748361
    Abstract: This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)?°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)?4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: June 10, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Lisa Saunders Baugh, Jo Ann Marie Canich, Chia Shian Chee, Mark Paul Hagemeister, Andrew Jackson, Peijun Jiang, Gordon H. Lee, Frederick Yip-Kwai Lo, Steven P. Rucker, Shakeel Tirmizi, John F. Walzer, Jr., Norman Yang
  • Publication number: 20130158307
    Abstract: A low viscosity poly(apha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1, and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins and has a kinematic viscosity at 100° C. of 20 cSt or less.
    Type: Application
    Filed: May 21, 2012
    Publication date: June 20, 2013
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, JR., Peijun Jiang
  • Patent number: 8404915
    Abstract: This invention relates to a method to selectively oligomerize olefins comprising contacting olefins with: 1) at least one diaryl-substituted diphosphine ligand; 2) a chromium metal precursor; and 3) optionally, one or more activators. In a particular embodiment, the method for selectively oligomerizing olefins includes trimerizing ethylene to selectively form 1-hexene.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: March 26, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Laughlin G. McCullough, Francis Charles Rix, John F. Walzer, Lily Joy Ackerman, Keith Anthony Hall, Gary Michael Diamond, Victor Oswaldo Nava-Salgado
  • Patent number: 8207390
    Abstract: A low viscosity poly(alpha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis-cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1 and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins, has a Mw/Mn between 1 and 1.4, and a kinematic viscosity at 100° C. of 20 cSt or less.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: June 26, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang
  • Patent number: 8076524
    Abstract: The present invention relates to a method for preparing olefin comonomers from ethylene. The comonomer generated can be used in a subsequent process, such as a polyethylene polymerization reactor. The comonomer generated can be transported, optionally without isolation or storage, to a polyethylene polymerization reactor. One method includes the steps of: feeding ethylene and a catalyst in a solvent/diluent to one or more comonomer synthesis reactors; reacting the ethylene and the catalyst under reaction conditions sufficient to produce an effluent comprising a desired comonomer; forming a gas stream comprising unreacted ethylene, and a liquid/bottoms stream comprising the comonomer, optionally by passing the effluent to one or more downstream gas/liquid phase separators; and purifying at least a portion of said liquid/bottoms stream by removing at least one of solid polymer, catalyst, and undesirable olefins therefrom.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: December 13, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, John F. Walzer, Jr., Krishnan Sankaranarayanan, John Scott Buchanan, Milind Bholanath Ajinkya, Stephen M Wood, Anastasios I Skoulidas, Jay L Reimers, Timothy Daniel Shaffer
  • Patent number: 8003839
    Abstract: The present invention relates to an in-line method for generating comonomer, from monomer, such as ethylene. The comonomer generated is stored prior to transporting to a polyethylene polymerization reactor. The in-line method includes the steps of providing an in-line comonomer synthesis reactor and a downstream gas/liquid phase separator prior to the polymerization reactor; feeding ethylene monomer and a catalyst in a solvent and/or diluent to the comonomer synthesis reactor; reacting the ethylene monomer and the catalyst in solvent and/or diluent under reaction conditions to produce an effluent stream including ethylene monomer and comonomer; passing the effluent stream from the comonomer synthesis reactor to the downstream gas/liquid phase separator to separate a gas stream from a bottom stream, wherein the gas stream is a mixture of ethylene monomer and comonomer; and passing the gas stream to the polymerization reactor to provide the necessary comonomer input.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: August 23, 2011
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Krishnan Sankaranarayanan, Milind B. Ajinkya, Stephen M. Wood, Anastasios I. Skoulidas, James R. Lattner, John F. Walzer
  • Patent number: 7989670
    Abstract: This invention relates to processes to produce liquid poly-alpha-olefins (PAOs) having a kinematic viscosity at 100° C. of more than 20 cSt in the presence of a metallocene catalyst with a non-coordinating anion activator and hydrogen.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: August 2, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang, Steven P. Rucker
  • Patent number: 7982085
    Abstract: The present invention relates to an in-line method for generating comonomer from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor. The in-line method includes the steps of providing an in-line comonomer synthesis reactor and a downstream gas/liquid phase separator prior to the polymerization reactor; feeding ethylene monomer and a catalyst in a solvent and/or diluent to the comonomer synthesis reactor; reacting the ethylene monomer and the catalyst in solvent and/or diluent under reaction conditions to produce an effluent stream including ethylene monomer and comonomer; passing the effluent stream from the comonomer synthesis reactor to the downstream gas/liquid phase separator to separate a gas stream from a bottom stream, wherein the gas stream is a mixture of ethylene monomer and comonomer; and passing the gas stream to the polymerization reactor to provide the necessary comonomer input.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: July 19, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Scott Buchanan, Timothy D. Shaffer, James R. Lattner, John F. Walzer
  • Patent number: 7638671
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 29, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7638670
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: December 29, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Publication number: 20090005279
    Abstract: This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)?°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)?4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.
    Type: Application
    Filed: June 2, 2006
    Publication date: January 1, 2009
    Inventors: Margaret May-Som Wu, Lisa Saunders Baugh, Jo Ann Canich, Chia Shian Chee, Mark Paul Hagemeister, Andrew Jackson, Peijun Jiang, Gordon H. Lee, Frederick Yip-Kwai Lo, Steven P. Rucker, Shakeel Tirmizi, John F. Walzer, JR., Norman Yang
  • Publication number: 20080293899
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Application
    Filed: August 8, 2008
    Publication date: November 27, 2008
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiahong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, JR., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Publication number: 20080269443
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Application
    Filed: June 27, 2008
    Publication date: October 30, 2008
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Mathew C. Kuchta, Tom Boussie, John F. Walzer, Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7425661
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias