Patents by Inventor John F. Walzer, Jr.
John F. Walzer, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9879104Abstract: This invention relates to a process to using an aminopyridinate scandium or yttrium metal (typically scandium) catalyst compound to produce ethylene conjugated diene copolymers, preferably ethylene isoprene copolymers having: 1) from 75 to 90 mol % ethylene; 2) from 10 to 25 mol % isoprene; 3) a Tg of 0° C. or less; 4) 1,4 isomer present at 60 wt % or less; 5) 3,4 and 1,2 present at 40% or more; 6) Mn of 250,000 g/mol or less; and 7) optionally, a Tm of 100° C. or less.Type: GrantFiled: March 29, 2016Date of Patent: January 30, 2018Assignee: ExxonMobil Chemical Patents Inc.Inventors: John F. Walzer, Jr., Anna A. Michels, John R. Hagadorn, Sarah J. Mattler, Carlos R. Lopez-Barron, Anthony J. Dias
-
Publication number: 20160319057Abstract: This invention relates to a process to using an aminopyridinate scandium or yttrium metal (typically scandium) catalyst compound to produce ethylene conjugated diene copolymers, preferably ethylene isoprene copolymers having: 1) from 75 to 90 mol % ethylene; 2) from 10 to 25 mol % isoprene; 3) a Tg of 0° C. or less; 4) 1,4 isomer present at 60 wt % or less; 5) 3,4 and 1,2 present at 40% or more; 6) Mn of 250,000 g/mol or less; and 7) optionally, a Tm of 100° C. or less.Type: ApplicationFiled: March 29, 2016Publication date: November 3, 2016Inventors: John F. Walzer, JR., Anna A. Michels, John R. Hagadorn, Sarah J. Mattler, Carlos R. Lopez-Barron, Anthony J. Dias
-
Patent number: 9409834Abstract: A low viscosity poly(apha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1, and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins and has a kinematic viscosity at 100° C. of 20 cSt or less.Type: GrantFiled: May 21, 2012Date of Patent: August 9, 2016Assignee: ExxonMobil Chemical Patents Inc.Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang
-
Patent number: 9068033Abstract: This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g?(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.Type: GrantFiled: November 26, 2013Date of Patent: June 30, 2015Assignee: ExxonMobil Chemical Patents Inc.Inventors: David M. Fiscus, Laughlin G. McCullough, John F. Walzer, Jr., Jay L. Reimers
-
Publication number: 20140378720Abstract: A process to produce polyalpha-olefins includes contacting a feed stream of at least one alpha-olefin monomer having 4 to 25 carbon atoms with a metallocene catalyst compound and an activator, and optionally an alkyl-aluminum compound, under polymerizations conditions in a reactor. The alpha-olefin monomer is present at 10% volume or more in the reactor and the feed stream includes less than 600 ppm of heteroatom containing compounds. The process further includes obtaining a polyalpha-olefin with at least 50 mole % C5 to C24 alpha-olefin monomer and kinematic viscosity at 100° C. of 5000 cSt or less.Type: ApplicationFiled: May 6, 2014Publication date: December 25, 2014Inventors: Margaret M. Wu, Norman Yang, Lisa S. Baugh, Jo Ann M. Canich, Steven P. Rucker, John F. Walzer, JR., Gordon H. Lee, Frederick Y. Lo, Andrew Jackson, Mark P. Hagemeister, Shakeel Tirmizi, Peijun Jiang, Chia S. Chee
-
Publication number: 20140179872Abstract: This invention relates to inventive ethylene-based copolymers comprising 75.0 wt % to 99.5 wt % of ethylene-derived units and 0.5 wt % to 25.0 wt % of C3 to C20 olefin derived units; the inventive ethylene-based copolymer having: a density in the range of from 0.900 to less than 0.940 g/cm3; a g?(vis) of less than 0.80; a melt index, I2, of from 0.25 to 1.5 g/10 min.; a Mw/Mn within a range from 3.0 to 6.0, and Mz/Mn greater than 8.0; and an absence of a local minimum loss angle at a complex modulus, G*, of 1.00×104 to 3.00×104 Pa.Type: ApplicationFiled: November 26, 2013Publication date: June 26, 2014Inventors: David M. Fiscus, Laughlin G. McCullough, John F. Walzer, Jr., Jay L. Reimers
-
Patent number: 8748361Abstract: This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)?°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)?4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.Type: GrantFiled: June 2, 2006Date of Patent: June 10, 2014Assignee: ExxonMobil Chemical Patents Inc.Inventors: Margaret May-Som Wu, Lisa Saunders Baugh, Jo Ann Marie Canich, Chia Shian Chee, Mark Paul Hagemeister, Andrew Jackson, Peijun Jiang, Gordon H. Lee, Frederick Yip-Kwai Lo, Steven P. Rucker, Shakeel Tirmizi, John F. Walzer, Jr., Norman Yang
-
Publication number: 20130158307Abstract: A low viscosity poly(apha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1, and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins and has a kinematic viscosity at 100° C. of 20 cSt or less.Type: ApplicationFiled: May 21, 2012Publication date: June 20, 2013Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, JR., Peijun Jiang
-
Patent number: 8207390Abstract: A low viscosity poly(alpha-olefin) (PAO) is produced by contacting one or more C3 to C24 alpha-olefins with an unbridged, substituted bis-cyclopentadienyl transition metal compound, a non-coordinating anion activator, and an alkyl-aluminum compound. The molar ratio of transition metal compound to activator is 10:1 to 0.1:1 and the molar ratio of alkyl aluminum compound to transition metal compound is 1:4 to 4000:1. The transition metal compound has either (a) at least one non-isoolefin substitution on both cyclopentadienyl rings, or (b) at least two substitutions on at least one cyclopentadienyl ring. The PAO is comprised of at least 50 mole % of C3 to C24 alpha-olefins, has a Mw/Mn between 1 and 1.4, and a kinematic viscosity at 100° C. of 20 cSt or less.Type: GrantFiled: July 19, 2006Date of Patent: June 26, 2012Assignee: ExxonMobil Chemical Patents Inc.Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang
-
Patent number: 8076524Abstract: The present invention relates to a method for preparing olefin comonomers from ethylene. The comonomer generated can be used in a subsequent process, such as a polyethylene polymerization reactor. The comonomer generated can be transported, optionally without isolation or storage, to a polyethylene polymerization reactor. One method includes the steps of: feeding ethylene and a catalyst in a solvent/diluent to one or more comonomer synthesis reactors; reacting the ethylene and the catalyst under reaction conditions sufficient to produce an effluent comprising a desired comonomer; forming a gas stream comprising unreacted ethylene, and a liquid/bottoms stream comprising the comonomer, optionally by passing the effluent to one or more downstream gas/liquid phase separators; and purifying at least a portion of said liquid/bottoms stream by removing at least one of solid polymer, catalyst, and undesirable olefins therefrom.Type: GrantFiled: January 17, 2007Date of Patent: December 13, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: James R. Lattner, John F. Walzer, Jr., Krishnan Sankaranarayanan, John Scott Buchanan, Milind Bholanath Ajinkya, Stephen M Wood, Anastasios I Skoulidas, Jay L Reimers, Timothy Daniel Shaffer
-
Patent number: 7989670Abstract: This invention relates to processes to produce liquid poly-alpha-olefins (PAOs) having a kinematic viscosity at 100° C. of more than 20 cSt in the presence of a metallocene catalyst with a non-coordinating anion activator and hydrogen.Type: GrantFiled: January 22, 2007Date of Patent: August 2, 2011Assignee: ExxonMobil Chemical Patents Inc.Inventors: Margaret May-Som Wu, Catalina L. Coker, John F. Walzer, Jr., Peijun Jiang, Steven P. Rucker
-
Patent number: 7638671Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.Type: GrantFiled: June 27, 2008Date of Patent: December 29, 2009Assignee: ExxonMobil Chemical Patents Inc.Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
-
Patent number: 7638670Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.Type: GrantFiled: August 8, 2008Date of Patent: December 29, 2009Assignee: ExxonMobil Chemical Patents Inc.Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
-
Publication number: 20090005279Abstract: This invention relates to a polyalpha-olefin (and hydrogenated analogs thereof) comprising more than 50 mole % of one or more C5 to C24 alpha-olefin monomers where the polyalpha-olefin has: a) 40 mole % or more of mm triads, b) a Bromine number of Y or greater, where Y is equal to 89.92*(V)?°5863, where V is the Kinematic Viscosity of the polyalpha-olefin measured at 100° C. in cSt, and c) 1,2 disubstituted olefins present at 7 mole % or more, preferably having Z mole % or more of units represented by the formula: where j, k and m are each, independently, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22, n is an integer from 1 to 350, and where Z=8.420*Log(V)?4.048, where V is the kinematic viscosity of the polyalpha-olefin measured at 1000 C in cSt This invention also relates to process to produce such polyalpha-olefins.Type: ApplicationFiled: June 2, 2006Publication date: January 1, 2009Inventors: Margaret May-Som Wu, Lisa Saunders Baugh, Jo Ann Canich, Chia Shian Chee, Mark Paul Hagemeister, Andrew Jackson, Peijun Jiang, Gordon H. Lee, Frederick Yip-Kwai Lo, Steven P. Rucker, Shakeel Tirmizi, John F. Walzer, JR., Norman Yang
-
Publication number: 20080293899Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.Type: ApplicationFiled: August 8, 2008Publication date: November 27, 2008Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiahong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, JR., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
-
Patent number: 7425661Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.Type: GrantFiled: March 9, 2006Date of Patent: September 16, 2008Assignee: ExxonMobil Chemicals Patents Inc.Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
-
Patent number: 7414006Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.Type: GrantFiled: March 9, 2006Date of Patent: August 19, 2008Assignee: ExxonMobil Chemical Patents Inc.Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
-
Patent number: 7077977Abstract: A discrete polyolefin catalyst activator is disclosed. A salient feature of invention borate-based activators is that at least one of the ligands on the borate non-coordinating anion (NCA) comprises a fluorinated aryl group linked to the boron atom through an acetylenic group appropriate pairing of invention activators with olefin polymerization. Catalyst precursors yield increased catalytic activity. Polymerization results are disclosed.Type: GrantFiled: December 3, 2002Date of Patent: July 18, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: George Rodriguez, Francis C. Rix, Matthew C. Kuchta, John F. Walzer, Jr.
-
Patent number: 6559253Abstract: The invention is directed to olefin polymerization processes using bridged hafnocene catalyst complexes comprising highly substituted noncoordinating anions that are surprisingly stable under high temperature olefin polymerization processes such that olefin copolymers having significant amount of incorporated comonomer can be prepared with high molecular weights. More specifically, the invention is a polymerization process for ethylene copolymers having a melt index of about 0.87 to about 0.930 comprising contacting, under homogeneous polymerization conditions at a reaction temperature at or above 140° C. to 225° C.Type: GrantFiled: July 10, 2001Date of Patent: May 6, 2003Assignee: ExxonMobil Chemical Patents Inc.Inventors: Donna J. Crowther, Bernard J. Folie, John F. Walzer, Jr., Rinaldo S. Schiffino
-
Patent number: 6426313Abstract: The described invention provides a low fouling, high particle density polymerization process and an olefin polymerization cocatalyst activator composition comprising a cross-linked polymer bead having a surface area of from about 1 to 20 m2/g to which are bound a plurality of non-coordinating anions, where the polymeric support comprises ligands covalently bound to the central metal or metalloid atoms of said anions, and an effective number of cationic species to achieve a balanced charge. The invention also provides an olefin polymerization catalyst compositions comprising the reaction product of a) the foregoing cocatalyst activator, and b) an organometallic transition metal compound having ancillary ligands, at least one labile ligand capable of abstraction by protonation and at least one labile ligand into which an olefinic monomer can insert for polymerization.Type: GrantFiled: March 26, 1999Date of Patent: July 30, 2002Assignee: Exxon Mobil Chemical Patents Inc.Inventors: John F. Walzer, Jr., Anthony J. Dias, Jean M J Frechet, Stephen B. Roscoe