Patents by Inventor John Fangman

John Fangman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10735101
    Abstract: A method of manufacturing an optical communication device includes preparing first and second pre-defined break lines in a carrier wafer. A first sub-mount is positioned near the first break line to accommodate an optical laser and a second sub-mount is positioned near the second break line to accommodate an optical modulator. The first sub-mount is secured to a thermally conductive and electrically nonconductive spacer which is secured to a thermo-electrical cooler that defines a gap between the first submount and the thermo-electrical cooler. A portion of the carrier wafer between the sub-mounts is removed.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: August 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Pfnuer, Ravi Kachru, John Fangman, Utpal Chakrabarti
  • Patent number: 10175448
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: January 8, 2019
    Assignee: Cisco Technology, Inc.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Publication number: 20170331557
    Abstract: In one embodiment, a method of manufacturing an optical communication device is disclosed. An optical sub-assembly and optical platform can form the optical communication device. Pre-defined break lines are placed on a carrier wafer. The wafer can accommodate a modulator sub-mount and a laser sub-mount. A tooling process is used to place the modulator sub-mount on an optical platform and the laser sub-mount adjacent to a thermo-electrical cooler. The laser sub-mount can be hermetically enclosed and aligned to communicate with the modulator sub-mount.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Inventors: Stefan Pfnuer, Ravi Kachru, John Fangman, Utpal Chakrabarti
  • Patent number: 9755752
    Abstract: A method of manufacturing an optical communication device aligns an optical sub-assembly and an optical modulator on a carrier wafer. A first sub-mount supports the optical sub-assembly and a second sub-mount supports the optical modulator. Pre-defined break lines are placed on the carrier wafer to accommodate separation of the sub-assembly and the optical modulator. The first sub-mount connects the optical sub-assembly to a thermoelectric cooler by either an epoxy, a spacer layer, or both. The optical sub-assembly is aligned in the x/y/z directions relative to the second sub-mount in a position to match an optical height of the optical modulator in the z-direction, wherein the z-direction is a vertical direction relative to the carrier wafer.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: September 5, 2017
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Pfnuer, Ravi Kachru, John Fangman, Utpal Chakrabarti
  • Patent number: 9341792
    Abstract: An silicon-on-insulator (SOI)-based photonics platform is formed to including a venting structure for encapsulating the active and passive optical components formed on the SOI-based photonics platform. The venting structure is used to allow for the encapsulated components to “breathe” such that water vapor and gasses will pass through the package and not condensate on any of the encapsulated optical surfaces. The venting structure is configured to also to prevent dust, liquids and other particulate material from entering the package.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 17, 2016
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Mary Nadeau, John Fangman, Duane Stackhouse, Craig Young, David Piede, Vipulkumar Patel
  • Patent number: 9261652
    Abstract: An opto-electronic apparatus comprises a substrate for supporting a plurality of components forming an opto-electronic assembly and an optical component attached to the substrate with an adhesive material, such as a solder or epoxy. The optical component is formed to include a plurality of bond slots disposed in parallel across at least a portion of the bottom surface of the optical component, the plurality of bond slots providing a path for a liquid adhesive material and improving the ability to displace the liquid adhesive material as the component is pressed into the surface of the substrate during the attachment process.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 16, 2016
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: John Fangman, Vipulkumar Patel, Ravinder Kachru
  • Patent number: 9213152
    Abstract: An apparatus for providing releasable attachment between a fiber connector and an opto-electronic assembly, the opto-electronic assembly utilizing an interposer substrate to support a plurality of opto-electronic components that generates optical output signals and receives optical input signals. An enclosure is used to cover the interposer substrate and includes a transparent region through which the optical output and input signals pass unimpeded. A magnetic connector component is attached to the lid and positioned to surround the transparent region, with a fiber connector for supporting one or more optical fibers magnetically attached to the connector component by virtue of a metallic component contained in the fiber connector. This arrangement provides releasable attachment of the fiber connector to the enclosure in a manner where the optical output and input signals align with the optical fibers in the connector.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: December 15, 2015
    Assignee: Cisco Technology Inc.
    Inventors: Kalpendu Shastri, Soham Pathak, John Fangman, Vipulkumar Patel, Kishor Desai, Ravinder Kachru
  • Publication number: 20150121683
    Abstract: In one embodiment, a method of manufacturing an optical communication device is disclosed. An optical sub-assembly and optical platform can form the optical communication device. Pre-defined break lines are placed on a carrier wafer. The wafer can accommodate a modulator sub-mount and a laser sub-mount. A tooling process is used to place the modulator sub-mount on an optical platform and the laser sub-mount adjacent to a thermo-electrical cooler. The laser sub-mount can be hermetically enclosed and aligned to communicate with the modulator sub-mount.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 7, 2015
    Inventors: Stefan Pfnuer, Ravi Kachru, John Fangman, Utpal Chakrabarti
  • Publication number: 20140362457
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Application
    Filed: July 15, 2014
    Publication date: December 11, 2014
    Inventors: Mary NADEAU, Vipulkumar PATEL, Prakash GOTHOSKAR, John FANGMAN, John Matthew FANGMAN, Mark WEBSTER
  • Patent number: 8836100
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: September 16, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Publication number: 20130182996
    Abstract: An apparatus for providing releasable attachment between a fiber connector and an opto-electronic assembly, the opto-electronic assembly utilizing an interposer substrate to support a plurality of opto-electronic components that generates optical output signals and receives optical input signals. An enclosure is used to cover the interposer substrate and includes a transparent region through which the optical output and input signals pass unimpeded. A magnetic connector component is attached to the lid and positioned to surround the transparent region, with a fiber connector for supporting one or more optical fibers magnetically attached to the connector component by virtue of a metallic component contained in the fiber connector. This arrangement provides releasable attachment of the fiber connector to the enclosure in a manner where the optical output and input signals align with the optical fibers in the connector.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 18, 2013
    Inventors: Kalpendu Shastri, Soham Pathak, John Fangman, Vipulkumar Patel, Kishor Desai, Ravinder Kachru
  • Publication number: 20130183010
    Abstract: An opto-electronic apparatus comprises a substrate for supporting a plurality of components forming an opto-electronic assembly and an optical component attached to the substrate with an adhesive material, such as a solder or epoxy. The optical component is formed to include a plurality of bond slots disposed in parallel across at least a portion of the bottom surface of the optical component, the plurality of bond slots providing a path for a liquid adhesive material and improving the ability to displace the liquid adhesive material as the component is pressed into the surface of the substrate during the attachment process.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 18, 2013
    Inventors: John Fangman, Vipulkumar Patel, Ravinder Kachru
  • Publication number: 20110317958
    Abstract: An silicon-on-insulator (SOI)-based photonics platform is formed to including a venting structure for encapsulating the active and passive optical components formed on the SOI-based photonics platform. The venting structure is used to allow for the encapsulated components to “breathe” such that water vapor and gasses will pass through the package and not condensate on any of the encapsulated optical surfaces. The venting structure is configured to also to prevent dust, liquids and other particulate material from entering the package.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 29, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mary Nadeau, John Fangman, Duane Stackhouse, Craig Young, David Piede, Vipulkumar Patel
  • Publication number: 20110127633
    Abstract: An arrangement for improving adhesive attachment of micro-components in an assembly utilizes a plurality of parallel-disposed slots formed in the top surface of the substrate used to support the micro-components. The slots are used to control the flow and “shape” of an adhesive “dot” so as to quickly and accurately attach a micro-component to the surface of a substrate. The slots are formed (preferably, etched) in the surface of the substrate in a manner that lends itself to reproducible accuracy from one substrate to another. Other slots (“channels”) may be formed in conjunction with the bonding slots so that extraneous adhesive material will flow into these channels and not spread into unwanted areas.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 2, 2011
    Applicant: LIGHTWIRE, INC.
    Inventors: Mary Nadeau, Vipulkumar Patel, Prakash Gothoskar, John Fangman, John Matthew Fangman, Mark Webster
  • Patent number: 7415184
    Abstract: An arrangement for providing optical coupling into and out of a relatively thin silicon waveguide formed in the SOI layer of an SOI structure includes a lensing element and a defined reference surface within the SOI structure for providing optical coupling in an efficient manner. The input to the waveguide may come from an optical fiber or an optical transmitting device (laser). A similar coupling arrangement may be used between a thin silicon waveguide and an output fiber (either single mode fiber or multimode fiber).
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: August 19, 2008
    Assignee: SiOptical Inc.
    Inventors: Margaret Ghiron, Prakash Gothoskar, John Fangman, Robert Keith Montgomery, Mary Nadeau
  • Patent number: 7373052
    Abstract: An arrangement for providing passive alignment between an optical fiber and the “tip” of a nanotaper coupling waveguide (the nanotaper formed within the SOI layer of an SOI-based optoelectronic arrangement). The arrangement includes a separate fiber carrier support element, including a longitudinal V-groove for supporting the fiber and an alignment feature formed parallel thereto. The SOI structure is formed to include an associated alignment slot, so that as the fiber carrier is positioned over and attached to the SOI structure, the alignment feature and alignment slot will mate together and provide passive alignment of the optical fiber to the nanotaper waveguide tip.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: May 13, 2008
    Assignee: SiOptical, Inc.
    Inventors: Mary Nadeau, John Fangman
  • Publication number: 20070274630
    Abstract: An arrangement for providing optical coupling into and out of a relatively thin silicon waveguide formed in the SOI layer of an SOI structure includes a lensing element and a defined reference surface within the SOI structure for providing optical coupling in an efficient manner. The input to the waveguide may come from an optical fiber or an optical transmitting device (laser). A similar coupling arrangement may be used between a thin silicon waveguide and an output fiber (either single mode fiber or multimode fiber).
    Type: Application
    Filed: January 11, 2007
    Publication date: November 29, 2007
    Inventors: Margaret Ghiron, Prakash Gothoskar, John Fangman, Robert Montgomery, Mary Nadeau
  • Publication number: 20070258680
    Abstract: An arrangement for providing passive alignment between an optical fiber and the “tip” of a nanotaper coupling waveguide (the nanotaper formed within the SOI layer of an SO-based optoelectronic arrangement). The arrangement includes a separate fiber carrier support element, including a longitudinal V-groove for supporting the fiber and an alignment feature formed parallel thereto. The SOI structure is formed to include an associated alignment slot, so that as the fiber carrier is positioned over and attached to the SOI structure, the alignment feature and alignment slot will mate together and provide passive alignment of the optical fiber to the nanotaper waveguide tip.
    Type: Application
    Filed: May 2, 2007
    Publication date: November 8, 2007
    Inventors: Mary Nadeau, John Fangman
  • Publication number: 20060177173
    Abstract: A vertical stack of integrated circuits includes at least one CMOS electronic integrated circuit (IC), an SOI-based opto-electronic integrated circuit structure, and an optical input/output coupling element. A plurality of metalized vias may be formed through the thickness of the stack so that electrical connections can be made between each integrated circuit. Various types of optical input/output coupling can be used, such as prism coupling, gratings, inverse tapers, and the like. By separating the optical and electrical functions onto separate ICs, the functionalities of each may be modified without requiring a re-design of the remaining system. By virtue of using SOI-based opto-electronics with the CMOS electronic ICs, a portion of the SOI structure may be exposed to provide access to the waveguiding SOI layer for optical coupling purposes.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 10, 2006
    Inventors: Kalpendu Shastri, Vipulkumar Patel, David Piede, John Fangman
  • Publication number: 20060126993
    Abstract: An SOI-based optical interconnection arrangement is provided that significantly reduces the size, complexity and power consumption requires of conventional high density electrical interconnections. In particular, a group of optical modulators and wavelength division multiplexers/demultiplexers are used in association with traditional electrical signal paths to “concentrate” a large number of the electrical-pinouts onto one optical waveguide (e.g., fiber). By utilizing a number of such SOI-based signal concentration structures, an optical backplane can be formed that couples all of these concentration structures through one optical substrate and then onto a separate number of output/receiving boards. Additionally, optical gain material may be embedded within the backplane element to further enhance the optical signal quality.
    Type: Application
    Filed: November 25, 2005
    Publication date: June 15, 2006
    Inventors: David Piede, Bipin Dama, Kalpendu Shastri, John Fangman, Harvey Wagner, Margaret Ghiron