Patents by Inventor John Fielden
John Fielden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210280386Abstract: An electron beam inspection system is disclosed, in accordance with one or more embodiments of the present disclosure. The inspection system may include an electron beam source configured to generate one or more primary electron beams. The inspection system may also include an electron-optical column including a set of electron-optical elements configured to direct the one or more primary electron beams to a sample. The inspection system may further include a detection assembly comprising: a scintillator substrate configured to collect electrons emanating from the sample, the scintillator substrate configured to generate optical radiation in response to the collected electrons; one or more light guides; one or more reflective surfaces configured to receive the optical radiation and direct the optical radiation along the one or more light guides; and one or more detectors configured to receive the optical radiation from the light guide.Type: ApplicationFiled: March 9, 2020Publication date: September 9, 2021Inventors: Alan D. Brodie, Lawrence P. Muray, John Fielden
-
Patent number: 11114491Abstract: An image sensor utilizes a pure boron layer and a second epitaxial layer having a p-type dopant concentration gradient to enhance sensing DUV, VUV or EUV radiation. Sensing (circuit) elements and associated metal interconnects are fabricated on an upper surface of a first epitaxial layer, then the second epitaxial layer is formed on a lower surface of the first epitaxial layer, and then a pure boron layer is formed on the second epitaxial layer. The p-type dopant concentration gradient is generated by systematically increasing a concentration of p-type dopant in the gas used during deposition/growth of the second epitaxial layer such that a lowest p-type dopant concentration of the second epitaxial layer occurs immediately adjacent to the interface with the first epitaxial layer, and such that a highest p-type dopant concentration of the second epitaxial layer occurs immediately adjacent to the interface with pure boron layer.Type: GrantFiled: September 5, 2019Date of Patent: September 7, 2021Assignee: KLA CorporationInventors: Yung-Ho Alex Chuang, Jehn-Huar Chern, John Fielden, Jingjing Zhang, David L. Brown, Sisir Yalamanchili
-
Patent number: 11114489Abstract: An image sensor for electrons or short-wavelength light includes a semiconductor membrane, circuit elements formed on one surface of the semiconductor membrane, and a pure boron layer on the other surface of the semiconductor membrane. The circuit elements are connected by metal interconnects comprising a refractory metal. An anti-reflection or protective layer may be formed on top of the pure boron layer. This image sensor has high efficiency and good stability even under continuous use at high flux for multiple years. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor.Type: GrantFiled: May 23, 2019Date of Patent: September 7, 2021Assignees: KLA-Tencor Corporation, Hamamatsu Photonics K.K.Inventors: Yung-Ho Alex Chuang, Jingjing Zhang, John Fielden, David L. Brown, Masaharu Muramatsu, Yasuhito Yoneta, Shinya Otsuka
-
Publication number: 20210272791Abstract: A broadband ultraviolet illumination source for a characterization system is disclosed. The broadband ultraviolet illumination source includes an enclosure having one or more walls, the enclosure configured to contain a gas, and a plasma discharge device based on a graphene-dielectric-semiconductor (GOS) planar-type structure. The GOS structure includes a silicon substrate having a top surface, a dielectric layer disposed on the top surface of the silicon substrate, and at least one layer of graphene disposed on a top surface of the dielectric layer. A metal contact may be formed on the top surface of the graphene layer. The GOS structure has several advantages for use in an illumination source, such as low operating voltage (below 50 V), planar surface electron emission, and compatibility with standard semiconductor processes. The broadband ultraviolet illumination source further includes electrodes placed inside the enclosure or magnets placed outside the enclosure to increase the current density.Type: ApplicationFiled: May 17, 2021Publication date: September 2, 2021Inventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Edgardo Garcia-Berrios, John Fielden
-
Publication number: 20210239629Abstract: Methods and systems for realizing a high radiance x-ray source based on a high density electron emitter array are presented herein. The high radiance x-ray source is suitable for high throughput x-ray metrology and inspection in a semiconductor fabrication environment. The high radiance X-ray source includes an array of electron emitters that generate a large electron current focused over a small anode area to generate high radiance X-ray illumination light. In some embodiments, electron current density across the surface of the electron emitter array is at least 0.01 Amperes/mm2, the electron current is focused onto an anode area with a dimension of maximum extent less than 100 micrometers, and the spacing between emitters is less than 5 micrometers. In another aspect, emitted electrons are accelerated from the array to the anode with a landing energy less than four times the energy of a desired X-ray emission line.Type: ApplicationFiled: January 27, 2021Publication date: August 5, 2021Inventors: Yung-Ho Alex Chuang, John Fielden
-
Patent number: 11081310Abstract: A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the second boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel electron-bombarded charge-coupled device (EBCCD) sensors and inspection systems.Type: GrantFiled: October 31, 2018Date of Patent: August 3, 2021Assignee: KLA-Tencor CorporationInventors: Yung-Ho Alex Chuang, John Fielden
-
Patent number: 11067389Abstract: A system for measuring an overlay error of a sample is disclosed. The system may include a broadband illumination source configured to emit broadband illumination. The system may also include one or more optical elements configured to direct the broadband illumination to a target disposed on the sample, wherein the one or more optical elements are configured to collect illumination from the target and direct it to a spectrometer, wherein the spectrometer is configured to disperse multiple wavelengths of the illumination collected from the sample to multiple elements of a sensor to generate a plurality of signals. The system may also include a controller configured to calculate an overlay error between a first structure and a second structure of the target by comparing the plurality of signals with a plurality of calculated signals.Type: GrantFiled: April 12, 2018Date of Patent: July 20, 2021Assignee: KLA CorporationInventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, John Fielden, Xuefeng Liu, Peilin Jiang
-
Publication number: 20210164917Abstract: An image sensor for short-wavelength light includes a semiconductor membrane, circuit elements formed on a first surface of the semiconductor membrane, and a boron-coated, textured surface on a second surface of the semiconductor membrane. The textured surface comprises pseudo-random, periodic, and/or random distribution of upright pyramids, inverted pyramids, and/or nanocones. The textured surface reduces the reflection of incident light across wide bands in the DUV and VUV regimes, thus increasing the amount of light absorbed and improving the efficiency of the image sensor. Reflectance may be further reduced by applying an antireflective coating on the textured surface. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. and incorporated in an inspection system.Type: ApplicationFiled: November 30, 2020Publication date: June 3, 2021Applicant: KLA CorporationInventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Sisir Yalamanchili, John Fielden, David L. Brown
-
Publication number: 20210164918Abstract: A system may include illumination optics to direct an illumination beam to a sample at an off-axis angle, collection optics to collect scattered light from the sample, and a phase mask located at a first pupil plane to provide different phase shifts for light in two or more pupil regions of a collection area to reshape a point spread function of light scattered from one or more particles on a surface of the sample. The system may further include a polarization rotator located at a second pupil plane, where the polarization rotator provides a spatially-varying polarization rotation angle selected to rotate light scattered from the surface of the sample to a selected polarization angle, a polarizer to reject light polarized along the selected polarization angle, and a detector to generate a dark-field image of the sample based on light passed by the polarizer.Type: ApplicationFiled: February 12, 2021Publication date: June 3, 2021Applicant: KLA CorporationInventors: Xuefeng Liu, Jenn-Kuen Leong, Daniel Kavaldjiev, John Fielden
-
Patent number: 11011366Abstract: A broadband ultraviolet illumination source for a characterization system is disclosed. The broadband ultraviolet illumination source includes an enclosure having one or more walls, the enclosure configured to contain a gas, and a plasma discharge device based on a graphene-dielectric-semiconductor (GOS) planar-type structure. The GOS structure includes a silicon substrate having a top surface, a dielectric layer disposed on the top surface of the silicon substrate, and at least one layer of graphene disposed on a top surface of the dielectric layer. A metal contact may be formed on the top surface of the graphene layer. The GOS structure has several advantages for use in an illumination source, such as low operating voltage (below 50 V), planar surface electron emission, and compatibility with standard semiconductor processes. The broadband ultraviolet illumination source further includes electrodes placed inside the enclosure or magnets placed outside the enclosure to increase the current density.Type: GrantFiled: May 20, 2020Date of Patent: May 18, 2021Assignee: KLA CorporationInventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Edgardo Garcia-Berrios, John Fielden
-
Publication number: 20210131978Abstract: Strontium tetraborate is used as an optical coating material for optical components utilized in semiconductor inspection and metrology systems to take advantage of its high refractive indices, high optical damage threshold and high microhardness in comparison to conventional optical materials. At least one layer of strontium tetraborate is formed on the light receiving surface of an optical component's substrate such that its thickness serves to increase or decrease the reflectance of the optical component. One or multiple additional coating layers may be placed on top of or below the strontium tetraborate layer, with the additional coating layers consisting of conventional optical materials. The thicknesses of the additional layers may be selected to achieve a desired reflectance of the optical component at specific wavelengths. The coated optical component is used in an illumination source or optical system utilized in a semiconductor inspection system, a metrology system or a lithography system.Type: ApplicationFiled: January 8, 2021Publication date: May 6, 2021Inventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Elena Loginova, John Fielden
-
Publication number: 20210098222Abstract: A light modulated electron source utilizes a photon-beam source to modulate the emission current of an electron beam emitted from a silicon-based field emitter. The field emitter's cathode includes a protrusion fabricated on a silicon substrate and having an emission tip covered by a coating layer. An extractor generates an electric field that attracts free electrons toward the emission tip for emission as part of the electron beam. The photon-beam source generates a photon beam including photons having an energy greater than the bandgap of silicon, and includes optics that direct the photon beam onto the emission tip, whereby each absorbed photon creates a photo-electron that combines with the free electrons to enhance the electron beam's emission current. A controller modulates the emission current by controlling the intensity of the photon beam applied to the emission tip. A monitor measures the electron beam and provides feedback to the controller.Type: ApplicationFiled: September 14, 2020Publication date: April 1, 2021Inventors: Edgardo Garcia Berrios, J. Joseph Armstrong, Yinying Xiao-Li, John Fielden, Yung-Ho Alex Chuang
-
Patent number: 10948423Abstract: A dark-field inspection system may include an illumination source to generate an illumination beam, illumination optics configured to direct the illumination beam to a sample at an off-axis angle along an illumination direction, collection optics to collect scattered light from the sample in response to the illumination beam in a dark-field mode, a polarization rotator located at a pupil plane of the one or more collection optics, where the polarization rotator provides a spatially-varying polarization rotation angle selected to rotate light scattered from a surface of the sample to a selected polarization angle, a polarizer aligned to reject light polarized along the selected polarization angle to reject the light scattered from a surface of the sample, and a detector to generate a dark-field image of the sample based on scattered light from the sample passed by the polarizer.Type: GrantFiled: September 20, 2019Date of Patent: March 16, 2021Assignee: KLA CorporationInventors: Xuefeng Liu, Jenn-Kuen Leong, Daniel Kavaldjiev, John Fielden
-
Patent number: 10943760Abstract: An electron gun for an electron microscope or similar device includes a field emitter cathode having a field emitter protrusion extending from the output surface of a monocrystalline silicon substrate, and electrodes configured to enhance the emission of electrons from a tip portion of the field emitter protrusion to generate a primary electron beam. A thin, contiguous SiC layer is disposed directly on at least the tip portion of the field emitter protrusion using a process that minimizes oxidation and defects in the SiC layer. Optional gate layers may be placed at, slightly lower than or slightly higher than the height of the field emitter tip portion to achieve high emission current and fast and accurate control of the primary emission beam. The field emitter can be p-type doped and configured to operate in a reverse bias mode, or the field emitter can be n-type doped.Type: GrantFiled: September 11, 2019Date of Patent: March 9, 2021Assignees: KLA Corporation, National Institute Of Advanced Industrial Science and TechnologyInventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Edgardo Garcia Berrios, John Fielden, Masayoshi Nagao
-
Patent number: 10921261Abstract: Strontium tetraborate is used as an optical coating material for optical components utilized in semiconductor inspection and metrology systems to take advantage of its high refractive indices, high optical damage threshold and high microhardness in comparison to conventional optical materials. At least one layer of strontium tetraborate is formed on the light receiving surface of an optical component's substrate such that its thickness serves to increase or decrease the reflectance of the optical component. One or multiple additional coating layers may be placed on top of or below the strontium tetraborate layer, with the additional coating layers consisting of conventional optical materials. The thicknesses of the additional layers may be selected to achieve a desired reflectance of the optical component at specific wavelengths. The coated optical component is used in an illumination source or optical system utilized in a semiconductor inspection system, a metrology system or a lithography system.Type: GrantFiled: March 16, 2020Date of Patent: February 16, 2021Assignee: KLA CorporationInventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Elena Loginova, John Fielden
-
Publication number: 20210010948Abstract: Strontium tetraborate can be used as an optical material. Strontium tetraborate exhibits high refractive indices, high optical damage threshold, and high microhardness. The transmission window of strontium tetraborate covers a very broad range of wavelengths, from 130 nm to 3200 nm, making the material particularly useful at VUV wavelengths. An optical component made of strontium tetraborate can be incorporated in an optical system, such as a semiconductor inspection system, a metrology system, or a lithography system. These optical components may include mirrors, lenses, lens arrays, prisms, beam splitters, windows, lamp cells or Brewster-angle optics.Type: ApplicationFiled: July 6, 2020Publication date: January 14, 2021Inventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Elena Loginova, John Fielden
-
Publication number: 20200388481Abstract: A broadband ultraviolet illumination source for a characterization system is disclosed. The broadband ultraviolet illumination source includes an enclosure having one or more walls, the enclosure configured to contain a gas, and a plasma discharge device based on a graphene-dielectric-semiconductor (GOS) planar-type structure. The GOS structure includes a silicon substrate having a top surface, a dielectric layer disposed on the top surface of the silicon substrate, and at least one layer of graphene disposed on a top surface of the dielectric layer. A metal contact may be formed on the top surface of the graphene layer. The GOS structure has several advantages for use in an illumination source, such as low operating voltage (below 50 V), planar surface electron emission, and compatibility with standard semiconductor processes. The broadband ultraviolet illumination source further includes electrodes placed inside the enclosure or magnets placed outside the enclosure to increase the current density.Type: ApplicationFiled: May 20, 2020Publication date: December 10, 2020Inventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Edgardo Garcia-Berrios, John Fielden
-
Publication number: 20200355621Abstract: Strontium tetraborate is used as an optical coating material for optical components utilized in semiconductor inspection and metrology systems to take advantage of its high refractive indices, high optical damage threshold and high microhardness in comparison to conventional optical materials. At least one layer of strontium tetraborate is formed on the light receiving surface of an optical component's substrate such that its thickness serves to increase or decrease the reflectance of the optical component. One or multiple additional coating layers may be placed on top of or below the strontium tetraborate layer, with the additional coating layers consisting of conventional optical materials. The thicknesses of the additional layers may be selected to achieve a desired reflectance of the optical component at specific wavelengths. The coated optical component is used in an illumination source or optical system utilized in a semiconductor inspection system, a metrology system or a lithography system.Type: ApplicationFiled: March 16, 2020Publication date: November 12, 2020Inventors: Yung-Ho Alex Chuang, Yinying Xiao-Li, Elena Loginova, John Fielden
-
Patent number: 10778925Abstract: A multiple-column-per-channel image CCD sensor utilizes a multiple-column-per-channel readout circuit including connected transfer gates that alternately transfer pixel data (charges) from a group of adjacent pixel columns to a shared output circuit at high speed with low noise. Charges transferred along the adjacent pixel columns at a line clock rate are alternately passed by the transfer gates to a summing gate that is operated at multiple times the line clock rate to pass the image charges to the shared output circuit. A symmetrical fork-shaped diffusion is utilized in one embodiment to merge the image charges from the group of related pixel columns. A method of driving the multiple-column-per-channel CCD sensor with line clock synchronization is also described. A method of inspecting a sample using the multiple-column-per-channel CCD sensor is also described.Type: GrantFiled: June 12, 2019Date of Patent: September 15, 2020Assignee: KLA-Tencor CorporationInventors: Yung-Ho Alex Chuang, Jingjing Zhang, Sharon Zamek, John Fielden, Devis Contarato, David L. Brown
-
Patent number: 10764527Abstract: A dual-column-parallel image CCD sensor utilizes a dual-column-parallel readout circuit including two pairs of cross-connected transfer gates to alternately transfer pixel data (charges) from a pair of adjacent pixel columns to a shared output circuit at high speed with low noise. Charges transferred along the two adjacent pixel columns at a line clock rate are alternately passed by the transfer gates to a summing gate that is operated at twice the line clock rate to pass the image charges to the shared output circuit. A symmetrical Y-shaped diffusion is utilized in one embodiment to merge the image charges from the two pixel columns. A method of driving the dual-column-parallel CCD sensor with line clock synchronization is also described. A method of inspecting a sample using the dual-column-parallel CCD sensor is also described.Type: GrantFiled: April 29, 2019Date of Patent: September 1, 2020Assignee: KLA-Tencor CorporationInventors: Yung-Ho Alex Chuang, Jingjing Zhang, Sharon Zamek, John Fielden, Devis Contarato, David L. Brown