Patents by Inventor John G. Carscadden

John G. Carscadden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11095280
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: August 17, 2021
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Publication number: 20210210315
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Application
    Filed: December 11, 2020
    Publication date: July 8, 2021
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20210152163
    Abstract: Some embodiments may include a nanosecond pulser comprising a plurality of solid state switches; a transformer having a stray inductance, Ls, a stray capacitance, Cs, and a turn ratio n; and a resistor with a resistance, R, in series between the transformer and the switches. In some embodiments, the resonant circuit produces a Q factor according to Q = 1 R ? L s C s ; and the nanosecond pulser produces an output voltage Vout from an input voltage Vin, according to Vout=QnVin.
    Type: Application
    Filed: January 29, 2021
    Publication date: May 20, 2021
    Inventors: Kenneth E. Miller, James R. Prager, Timothy M. Ziemba, John G. Carscadden, Ilia Slobodov, Alex Patrick Henson
  • Patent number: 10985740
    Abstract: A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 20, 2021
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, Ilia Slobodov
  • Publication number: 20210066042
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20210027990
    Abstract: Some embodiments include a high voltage waveform generator comprising: a generator inductor; a high voltage nanosecond pulser having one or more solid state switches electrically and/or inductively coupled with the generator inductor, the high voltage nanosecond pulser configured to produce a pulse burst having a burst period, the pulse burst comprising a plurality of pulses having different pulse widths; and a load electrically and/or inductively coupled with the high voltage nanosecond pulser, the generator inductor, and the generator capacitor, the voltage across the load having an output pulse with a pulse width substantially equal to the burst period and the voltage across the load varying in a manner that is substantially proportional with the pulse widths of the plurality of pulses.
    Type: Application
    Filed: July 29, 2020
    Publication date: January 28, 2021
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, James R. Prager, Ilia Slobodov
  • Patent number: 10896809
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: January 19, 2021
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10847346
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: November 24, 2020
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10777388
    Abstract: Some embodiments include a high voltage waveform generator comprising: a generator inductor; a high voltage nanosecond pulser having one or more solid state switches electrically and/or inductively coupled with the generator inductor, the high voltage nanosecond pulser configured to produce a pulse burst having a burst period, the pulse burst comprising a plurality of pulses having different pulse widths; and a load electrically and/or inductively coupled with the high voltage nanosecond pulser, the generator inductor, and the generator capacitor, the voltage across the load having an output pulse with a pulse width substantially equal to the burst period and the voltage across the load varying in a manner that is substantially proportional with the pulse widths of the plurality of pulses.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: September 15, 2020
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M Ziemba, Kenneth E Miller, John G Carscadden, James R Prager, Ilia Slobodov
  • Patent number: 10734906
    Abstract: A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: August 4, 2020
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Kenneth E. Miller, Timothy Ziemba, Ilia Slobodov, John G. Carscadden, James Prager
  • Publication number: 20200168436
    Abstract: Some embodiments include a high voltage waveform generator comprising: a generator inductor; a high voltage nanosecond pulser having one or more solid state switches electrically and/or inductively coupled with the generator inductor, the high voltage nanosecond pulser configured to produce a pulse burst having a burst period, the pulse burst comprising a plurality of pulses having different pulse widths; and a load electrically and/or inductively coupled with the high voltage nanosecond pulser, the generator inductor, and the generator capacitor, the voltage across the load having an output pulse with a pulse width substantially equal to the burst period and the voltage across the load varying in a manner that is substantially proportional with the pulse widths of the plurality of pulses.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 28, 2020
    Inventors: Timothy M Ziemba, Kenneth E Miller, John G Carscadden, James R Prager, Ilia Slobodov
  • Publication number: 20200162061
    Abstract: A nanosecond pulser is disclosed. In some embodiments, the nanosecond pulser may include one or more switch circuits including one or more solid state switches, a transformer, and an output. In some embodiments, the transformer may include a first transformer core, a first primary winding wound at least partially around a portion of the first transformer core, and a secondary winding wound at least partially around a portion of the first transformer core. In some embodiments, each of the one or more switch circuits are coupled with at least a portion of the first primary winding. In some embodiments, the output may be electrically coupled with the secondary winding and outputs electrical pulses having a peak voltage greater than about 1 kilovolt and a rise time of less than 150 nanoseconds or less than 50 nanoseconds.
    Type: Application
    Filed: June 28, 2019
    Publication date: May 21, 2020
    Inventors: James R. Prager, Timothy M. Ziemba, Kenneth E. Miller, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200161091
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Application
    Filed: November 20, 2019
    Publication date: May 21, 2020
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10607814
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: March 31, 2020
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200083812
    Abstract: A pulse generator is disclosed that includes at least the following stages a driver stage, a transformer stage, a rectifier stage, and an output stage. The driver stage may include at least one solid state switch such as, for example, of one or more IGBTs and/or one or more MOSFETs. The driver stage may also have a stray inductance less than 1,000 nH. The transformer stage may be coupled with the driver stage and/or with a balance stage and may include one or more transformers. The rectifier stage may be coupled with the transformer stage and may have a stray inductance less than 1,000 nH. The output stage may be coupled with the rectifier stage. The output stage may output a signal pulse with a voltage greater than 2 kilovolts and a frequency greater than 5 kHz. In some embodiments, the output stage may be galvanically isolated from a reference potential.
    Type: Application
    Filed: January 17, 2019
    Publication date: March 12, 2020
    Inventors: Kenneth E. Miller, Timothy Ziemba, IIia Slobodov, John G. Carscadden, James Prager
  • Publication number: 20200051786
    Abstract: A high voltage switch comprising: a high voltage power supply providing power greater than about 5 kV; a control voltage power source; a plurality of switch modules arranged in series with respect to each other each of the plurality of switch modules configured to switch power from the high voltage power supply, and an output configured to output a pulsed output signal having a voltage greater than the rating of any switch of the plurality of switch modules, a pulse width less than 2 ?s, and at a pulse frequency greater than 10 kHz.
    Type: Application
    Filed: November 1, 2018
    Publication date: February 13, 2020
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200043702
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Application
    Filed: October 11, 2019
    Publication date: February 6, 2020
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Publication number: 20200014378
    Abstract: Embodiments of the invention provide IGBT circuit modules with increased efficiencies. These efficiencies can be realized in a number of ways. In some embodiments, the gate resistance and/or voltage can be minimized. In some embodiments, the IGBT circuit module can be switched using an isolated receiver such as a fiber optic receiver. In some embodiments, a single driver can drive a single IGBT. And in some embodiments, a current bypass circuit can be included. Various other embodiments of the invention are disclosed.
    Type: Application
    Filed: July 17, 2019
    Publication date: January 9, 2020
    Inventors: Timothy Ziemba, Kenneth E. Miller, John G. Carscadden, James Prager
  • Patent number: 10483089
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: November 19, 2019
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov
  • Patent number: 10460911
    Abstract: Some embodiments include a high voltage, high frequency switching circuit. The switching circuit may include a high voltage switching power supply that produces pulses having a voltage greater than 1 kV and with frequencies greater than 10 kHz and an output. The switching circuit may also include a resistive output stage electrically coupled in parallel with the output and between the output stage and the high voltage switching power supply, the resistive output stage comprising at least one resistor that discharges a load coupled with the output. In some embodiments, the resistive output stage may be configured to discharge over about 1 kilowatt of average power during each pulse cycle. In some embodiments, the output can produce a high voltage pulse having a voltage greater than 1 kV and with frequencies greater than 10 kHz with a pulse fall time less than about 400 ns.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 29, 2019
    Assignee: Eagle Harbor Technologies, Inc.
    Inventors: Timothy M. Ziemba, Kenneth E. Miller, James R. Prager, John G. Carscadden, Ilia Slobodov