Patents by Inventor John G. Darab

John G. Darab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200101436
    Abstract: A passive NOX adsorbent includes: palladium, platinum or a mixture thereof and a mixed or composite oxide including the following elements in percentage by weight, expressed in terms of oxide: 10-90% by weight zirconium and 0.1-50% by weight of least one of the following: a transition metal or a lanthanide series element other than Ce. Although the passive NOX adsorbent can include Ce in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide, advantages are obtained particularly in the case of low-Ce or a substantially Ce-free passive NOx adsorbent.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Inventors: Deborah Jayne HARRIS, David Alastair SCAPENS, John G. DARAB, Mark CROCKER, Yaying JI
  • Patent number: 10500562
    Abstract: A passive NOX adsorbent includes: palladium, platinum or a mixture thereof and a mixed or composite oxide including the following elements in percentage by weight, expressed in terms of oxide: 10-90% by weight zirconium and 0.1-50% by weight of least one of the following: a transition metal or a lanthanide series element other than Ce. Although the passive NOX adsorbent can include Ce in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide, advantages are obtained particularly in the case of low-Ce or a substantially Ce-free passive NOx adsorbent.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: December 10, 2019
    Assignees: Magnesium Elektron Ltd., University of Kentucky Research Foundation
    Inventors: Deborah Jayne Harris, David Alastair Scapens, John G. Darab, Mark Crocker, Yaying Ji
  • Publication number: 20190308164
    Abstract: A passive NOX adsorbent includes: palladium, platinum or a mixture thereof and a mixed or composite oxide including the following elements in percentage by weight, expressed in terms of oxide: 10-90% by weight zirconium and 0.1-50% by weight of least one of the following: a transition metal or a lanthanide series element other than Ce. Although the passive NOX adsorbent can include Ce in an amount ranging from 0.1 to 20% by weight expressed in terms of oxide, advantages are obtained particularly in the case of low-Ce or a substantially Ce-free passive NOx adsorbent.
    Type: Application
    Filed: April 5, 2018
    Publication date: October 10, 2019
    Inventors: Deborah Jayne HARRIS, David Alastair SCAPENS, John G. DARAB, Mark CROCKER, Yaying JI
  • Publication number: 20110183840
    Abstract: An improved method for the formation of composite hydroxides or oxides comprising, on an oxide basis, Al2O3 and ZrO2, and optionally CeO2, La2O3, Nd2O3, Pr6O11, Sm2O3, Y2O3, and other rare earth oxides, comprising the steps of preparing an aqueous metal salt solution and forming a hydroxide precipitate slurry by combining the aqueous metal salt solution with an aqueous solution of a caustic alkali at a pH greater than 8.5 to precipitate out all the metal species. The variation in pH during the precipitation reaction is ±1. The invention also relates to composites formed by this method comprising 20-70 wt % Al2O3, 10-77 wt % ZrO2, 0-34 wt % CeO2 and 0-22 wt % REOs other than CeO2, and to composites per se comprising, on an oxide basis, 42-70 wt % Al2O3, 10-48 wt % ZrO2, 2-34 wt % CeO2 and 0-9 wt % REOs other than CeO2 and having the following properties after heating to 850° C. over four hours and holding at 850° C.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Applicant: MAGNESIUM ELEKTRON LIMITED
    Inventor: John G. DARAB
  • Patent number: 7939041
    Abstract: An improved method for the formation of composite hydroxides or oxides comprising, on an oxide basis, Al2O3 and ZrO2, and optionally CeO2, La2O3, Nd2O3, Pr6O11, Sm2O3, Y2O3, and other rare earth oxides, comprising the steps of preparing an aqueous metal salt solution and forming a hydroxide precipitate slurry by combining the aqueous metal salt solution with an aqueous solution of a caustic alkali at a pH greater than 8.5 to precipitate out all the metal species. The variation in pH during the precipitation reaction is ±1. The invention also relates to composites formed by this method comprising 20-70 wt % Al2O3, 10-77 wt % ZrO2, 0-34 wt % CeO2 and 0-22 wt % REOs other than CeO2, and to composites per se comprising, on an oxide basis, 42-70 wt % Al2O3, 10-48 wt % ZrO2, 2-34 wt % CeO2 and 0-9 wt % REOs other than CeO2 and having the following properties after heating to 850° C. over four hours and holding at 850° C.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 10, 2011
    Assignee: Magnesium Elektron Limited
    Inventor: John G. Darab
  • Patent number: 5902641
    Abstract: The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: May 11, 1999
    Assignee: Battelle Memorial Institute
    Inventors: John D. Affinito, John G. Darab, Mark E. Gross
  • Patent number: 5652192
    Abstract: The material of the present invention is a mixture of catalytically active material and carrier materials, which may be catalytically active themselves. Hence, the material of the present invention provides a catalyst particle that has catalytically active material throughout its bulk volume as well as on its surface. The presence of the catalytically active material throughout the bulk volume is achieved by chemical combination of catalytically active materials with carrier materials prior to or simultaneously with crystallite formation.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: July 29, 1997
    Assignee: Battelle Memorial Institute
    Inventors: Dean W. Matson, John L. Fulton, John C. Linehan, Roger M. Bean, Thomas D. Brewer, Todd A. Werpy, John G. Darab