Patents by Inventor John G. Frye

John G. Frye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934605
    Abstract: Methods are provided for synthesizing high purity niobium or rhenium powders by a combustion reaction. The methods can include: forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and at least one base-soluble, ammonium salt of niobium or rhenium in amounts that yield a stoichiometric burn when combusted; and heating the combustion synthesis solution to a temperature sufficient to substantially remove the water and to initiate a self-sustaining combustion reaction.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: March 2, 2021
    Assignee: Battelle Memorial Institute
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Patent number: 10005974
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: June 26, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 9932531
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 3, 2018
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Publication number: 20180037975
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a soichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Application
    Filed: October 17, 2017
    Publication date: February 8, 2018
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Publication number: 20170369804
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Application
    Filed: August 18, 2017
    Publication date: December 28, 2017
    Applicant: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 9802834
    Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: October 31, 2017
    Assignee: Battelle Memorial Institute
    Inventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
  • Patent number: 9771533
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: September 26, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Publication number: 20170218283
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 3, 2017
    Applicant: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 9663416
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: May 30, 2017
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthikeyan Kallupalayam Ramasamy
  • Patent number: 9434659
    Abstract: A composition comprising 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by exposure to a catalyst comprising (a) MxOy wherein M is a rare earth metal, a group IIIA metal, Zr, or a combination thereof, and x and y are based upon an oxidation state of M, or (b) M3a(PO4)b where M3 is a group IA, a group IIA metal, a group IIIA metal, or a combination thereof, and a and b are based upon the oxidation state of M3. Embodiments of the catalyst comprising MxOy may further include M2, wherein M2 is a rare earth metal, a group IIA metal, Zr, Al, or a combination thereof. In some embodiments, 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by a catalyst comprising MxOy, and the methyl vinyl carbinol is subsequently dehydrated to 1,3-butadiene by exposure to a solid acid catalyst.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 6, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, John G. Frye, Jr., Suh-Jane Lee, Karl O. Albrecht
  • Publication number: 20160194257
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Application
    Filed: October 30, 2014
    Publication date: July 7, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthi Ramasamy
  • Publication number: 20160194572
    Abstract: Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.
    Type: Application
    Filed: October 30, 2014
    Publication date: July 7, 2016
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Michael A. Lilga, Richard T. Hallen, Karl O. Albrecht, Alan R. Cooper, John G. Frye, Karthi Ramasamy
  • Patent number: 9283637
    Abstract: Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 15, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Glenn J. Grant, John G. Frye, Jin Yong Kim, Curt A. Lavender, Kenneth Scott Weil
  • Publication number: 20150218062
    Abstract: A composition comprising 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by exposure to a catalyst comprising (a) MxOy wherein M is a rare earth metal, a group IIIA metal, Zr, or a combination thereof, and x and y are based upon an oxidation state of M, or (b) M3a(PO4)b where M3 is a group IA, a group IIA metal, a group IIIA metal, or a combination thereof, and a and b are based upon the oxidation state of M3. Embodiments of the catalyst comprising MxOy may further include M2, wherein M2 is a rare earth metal, a group IIA metal, Zr, Al, or a combination thereof. In some embodiments, 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by a catalyst comprising MxOy, and the methyl vinyl carbinol is subsequently dehydrated to 1,3-butadiene by exposure to a solid acid catalyst.
    Type: Application
    Filed: January 28, 2015
    Publication date: August 6, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Michael A. Lilga, John G. Frye, JR., Suh-Jane Lee, Karl O. Albrecht
  • Publication number: 20150094498
    Abstract: Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John G. Frye, Jr., Aaron A. Oberg, Alan H. Zacher
  • Patent number: 8937202
    Abstract: Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 20, 2015
    Assignee: Battelle Memorial Institute
    Inventors: John G. Frye, Aaron A. Oberg, Alan H. Zacher
  • Patent number: 8501963
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110306780
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: December 15, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Publication number: 20110263874
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Todd A. Werpy, John G. Frye, JR., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110257419
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher