Patents by Inventor John G. Frye, Jr.

John G. Frye, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9434659
    Abstract: A composition comprising 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by exposure to a catalyst comprising (a) MxOy wherein M is a rare earth metal, a group IIIA metal, Zr, or a combination thereof, and x and y are based upon an oxidation state of M, or (b) M3a(PO4)b where M3 is a group IA, a group IIA metal, a group IIIA metal, or a combination thereof, and a and b are based upon the oxidation state of M3. Embodiments of the catalyst comprising MxOy may further include M2, wherein M2 is a rare earth metal, a group IIA metal, Zr, Al, or a combination thereof. In some embodiments, 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by a catalyst comprising MxOy, and the methyl vinyl carbinol is subsequently dehydrated to 1,3-butadiene by exposure to a solid acid catalyst.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: September 6, 2016
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, John G. Frye, Jr., Suh-Jane Lee, Karl O. Albrecht
  • Publication number: 20150218062
    Abstract: A composition comprising 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by exposure to a catalyst comprising (a) MxOy wherein M is a rare earth metal, a group IIIA metal, Zr, or a combination thereof, and x and y are based upon an oxidation state of M, or (b) M3a(PO4)b where M3 is a group IA, a group IIA metal, a group IIIA metal, or a combination thereof, and a and b are based upon the oxidation state of M3. Embodiments of the catalyst comprising MxOy may further include M2, wherein M2 is a rare earth metal, a group IIA metal, Zr, Al, or a combination thereof. In some embodiments, 2,3-butanediol is dehydrated to methyl vinyl carbinol and/or 1,3-butadiene by a catalyst comprising MxOy, and the methyl vinyl carbinol is subsequently dehydrated to 1,3-butadiene by exposure to a solid acid catalyst.
    Type: Application
    Filed: January 28, 2015
    Publication date: August 6, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Michael A. Lilga, John G. Frye, JR., Suh-Jane Lee, Karl O. Albrecht
  • Publication number: 20150094498
    Abstract: Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: John G. Frye, Jr., Aaron A. Oberg, Alan H. Zacher
  • Patent number: 8501963
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110306780
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: December 15, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Publication number: 20110263874
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Application
    Filed: July 1, 2011
    Publication date: October 27, 2011
    Inventors: Todd A. Werpy, John G. Frye, JR., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Publication number: 20110257419
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, JR., Alan H. Zacher
  • Patent number: 7994347
    Abstract: A method of reducing hydroxymethylfurfural (HMF) where a starting material containing HMF in a solvent comprising water is provided. H2 is provided into the reactor and the starting material is contacted with a catalyst containing at least one metal selected from Ni, Co, Cu, Pd, Pt, Ru, Ir, Re and Rh, at a temperature of less than or equal to 250° C. A method of hydrogenating HMF includes providing an aqueous solution containing HMF and fructose. H2 and a hydrogenation catalyst are provided. The HMF is selectively hydrogenated relative to the fructose at a temperature at or above 30° C. A method of producing tetrahydrofuran dimethanol (THFDM) includes providing a continuous flow reactor having first and second catalysts and providing a feed comprising HMF into the reactor. The feed is contacted with the first catalyst to produce furan dimethanol (FDM) which is contacted with the second catalyst to produce THFDM.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: August 9, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Michael A. Lilga, Richard T. Hallen, Todd A. Werpy, James F. White, Johnathan E. Holladay, John G. Frye, Jr., Alan H. Zacher
  • Patent number: 7973177
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methylpyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 5, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 7776782
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: August 17, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
  • Publication number: 20100145072
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methylpyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Todd A. Werpy, John G. Frye, JR., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 7652131
    Abstract: The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: January 26, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, Andrew J. Schmidt, John G. Frye, Jr., Alan H. Zacher, James A. Franz, Mikhail S. Alnajjar, Gary G. Neuenschwander, Eric V. Alderson, Rick J. Orth, Charles A. Abbas, Kyle E. Beery, Anne M. Rammelsberg, Catherine J. Kim
  • Publication number: 20090264686
    Abstract: Hydrogenolysis processes are provided that can include providing a hydrogenolysis reactor having a catalyst therein. The catalyst can be exposed to a reducing agent in the absence of polyhydric alcohol compound while maintaining a temperature of the catalyst above 290° C. Hydrogenolysis processes can also include providing a passivated catalyst to within a reactor and exposing the catalyst to a reducing atmosphere while maintaining the catalyst at a temperature less than 210° C. Hydrogenolysis catalyst preparation methods are provided that can include exposing the catalyst to a first reducing atmosphere while maintaining the catalyst at a first temperature to reduce at least a portion of the catalyst. The method can also include passivating at least the portion of the catalyst and depassivating the portion of the catalyst in the presence of a second reducing atmosphere while maintaining the portion of the catalyst at a second temperature less than the first temperature.
    Type: Application
    Filed: April 16, 2008
    Publication date: October 22, 2009
    Inventors: Johnathan E. Holladay, James F. White, Thomas H. Peterson, John G. Frye, JR., Danielle S. Muzatko, Simon R. Bare, James G. Vassilakis, Richard R. Rosin
  • Publication number: 20090088317
    Abstract: A reduction catalyst having a first metal component comprising one of Co, Os, Fe, Re, Rh and Ru. The first metal component is present in the catalyst at from 0.5 percent to 20 percent, by weight. A second metal component differing from the first metal component present in the catalyst with the second metal component being selected from the group consisting of Fe, Mn, Ru, Os, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Co, Re, Cu, Pb, Cr, W, Mo, Sn, Nb, Cd, Te, V, Bi, Ga and Na. A hydrogenation catalyst comprising one or both of Ni and Co and one or more elements selected from the group consisting of Mn, Fe, Ag, Au, Mo and Rh.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: John G. Frye, JR., Johnathan E. Holladay, Danielle S. Muzatko, James F. White, Alan H. Zacher
  • Patent number: 7199250
    Abstract: The invention includes methods of processing an initial di-carbonyl compound by conversion to a cyclic compound. The cyclic compound is reacted with an alkylating agent to form a derivative having an alkylated ring nitrogen. The invention encompasses a method of producing an N-alkyl product. Ammonia content of a solution is adjusted to produce a ratio of ammonia to di-carboxylate compound of from about 1:1 to about 1.5:1. An alkylating agent is added and the initial compound is alkylated and cyclized. The invention includes methods of making N-methyl pyrrolidinone (NMP). Aqueous ammonia and succinate is introduced into a vessel and ammonia is adjusted to provide a ratio of ammonia to succinate of less than 2:1. A methylating agent is reacted with succinate at a temperature of from greater than 100° C. to about 400° C. to produce N-methyl succinimide which is purified and hydrogenated to form NMP.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: April 3, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., James F. White, Johnathan E. Holladay, Alan H. Zacher
  • Patent number: 7186668
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 6, 2007
    Assignee: Battele Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Jr., Yong Wang, Alan H. Zacher
  • Patent number: 7169321
    Abstract: A nontoxic deicing/anti-icing fluid includes a biobased freezing point depressant, a surfactant, an antioxidant, and water. The fluid has an LD50 greater than about 10,000 mg/L. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a vinylpyrrolidone polymer having a molecular weight between about 10,000 and about 700,000, and water. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a nonionic surfactant selected from the polyoxyalkylene ethers, an antioxidant, and water. Another deicing/anti-icing fluid includes a biobased freezing point depressant, a surfactant, a food grade material that functions as an antioxidant, and water. A further deicing/anti-icing fluid includes a biobased freezing point depressant, a material that functions as both a buffer and a freezing point depressant, and water.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: January 30, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Kevin L. Simmons, John G. Frye, Jr., Todd A. Werpy, William D. Samuels, H. Nicholas Conkle, Bruce F. Monzyk, Sara F. Kuczek, Satya P. Chauhan
  • Patent number: 7105105
    Abstract: A nontoxic deicing/anti-icing fluid includes a freezing point depressant selected from short chain polyols having 3 to 5 carbons atoms, and mixtures thereof, a wetting agent, an antioxidant/preservative, and water. The fluid has an LD50 greater than about 10,000 mg/L. Another deicing/anti-icing fluid includes the freezing point depressant, a vinylpyrrolidone polymer having a molecular weight between about 10,000 and about 700,000, and water. A runway deicing fluid includes glycerol, a buffer, an antioxidant/preservative, and water. Another deicing/anti-icing fluid includes a freezing point depressant having hydrophobic character, a wetting agent comprising an organophosphorus compound capable of producing an organic wettable surface, and water.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: September 12, 2006
    Assignee: Battelle Memorial Institute
    Inventors: William D. Samuels, H. Nicholas Conkle, Bruce F. Monzyk, Kevin L. Simmons, John G. Frye, Jr., Todd A. Werpy, Sara F. Kuczek, Satya P. Chauhan
  • Patent number: 7038094
    Abstract: Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 5-carbon sugar, sugar alcohol, or lactic acid are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol. A process for the synthesis of PG from lactate or lactic acid is also described.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 2, 2006
    Assignee: Battelle Memorial Institute
    Inventors: Todd A. Werpy, John G. Frye, Jr., Alan H. Zacher, Dennis J. Miller
  • Patent number: 7033470
    Abstract: Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described for transporting oxygen from any oxygen-containing gas to any gas or mixture of gases that consume oxygen. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces. The element may further comprise (1) a porous substrate, (2) an electron-conductive metal, metal oxide or mixture thereof and/or (3) a catalyst.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: April 25, 2006
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer