Patents by Inventor John G. Panagou

John G. Panagou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5438875
    Abstract: An overpressure-protected, differential pressure sensor 37 is formed by depositing diaphragm material 24 over a cavity 23 formed and filled with sacrificial material 22 into a front surface of a substrate. The sacrificial material 22 is then removed to create a free diaphragm. The floor of the cavity 23 defines a first pressure stop to limit the deflection of the diaphragm in response to pressure applied to the top of the diaphragm. A port 33 is created to allow pressure to be applied to the bottom side of the diaphragm 24. An optional second pressure stop, which limits the deflection of the diaphragm in response to pressure applied to the bottom side of the diaphragm, is formed by bonding a cap 35 to standoffs 34 placed around the top of the diaphragm. The standoffs are spaced to allow pressure to be applied to the top of the diaphragm.
    Type: Grant
    Filed: April 21, 1994
    Date of Patent: August 8, 1995
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau, P. Rowe Harris, John G. Panagou, Gary A. Dahrooge
  • Patent number: 5357808
    Abstract: An overpressure-protected, differential pressure sensor (37) is formed by depositing diaphragm material (24) over a cavity (23) formed and filled with sacrificial material (22) into a front surface of a substrate. The sacrificial material (22) is then removed to create a free diaphragm. The floor of the cavity (23) defines a first pressure stop to limit the deflection of the diaphragm in response to pressure applied to the top of the diaphragm. A port (33) is created to allow pressure to be applied to the bottom side of the diaphragm (24). An optional second pressure stop, which limits the deflection of the diaphragm in response to pressure applied to the bottom side of the diaphragm, is formed by bonding a cap (35) to stand-offs (34) placed around the top of the diaphragm. The stand-offs are spaced to allow pressure to be applied to the top of the diaphragm.
    Type: Grant
    Filed: March 26, 1993
    Date of Patent: October 25, 1994
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau, P. Rowe Harris, John G. Panagou, Gary A. Dahrooge
  • Patent number: 5220838
    Abstract: An overpressure-protected, differential pressure sensor (37) is formed by depositing diaphragm material (24) over a cavity (23) formed and filled with sacrificial material (22) into a front surface of a substrate. The sacrificial material (22) is then removed to create a free diaphragm. The floor of the cavity (23) defines a first pressure stop to limit the deflection of the diaphragm in response to pressure applied to the top of the diaphragm. A port (33) is created to allow pressure to be applied to the bottom side of the diaphragm (24). An optional second pressure stop, which limits the deflection of the diaphragm in response to pressure applied to the bottom side of the diaphragm, is formed by bonding a cap (35) to standoffs (34) placed around the top of the diaphragm. The standoffs are spaced to allow pressure to be applied to the top of the diaphragm.
    Type: Grant
    Filed: March 28, 1991
    Date of Patent: June 22, 1993
    Assignee: The Foxboro Company
    Inventors: Clifford D. Fung, Kevin H.-L. Chau, P. Rowe Harris, John G. Panagou, Gary A. Dahrooge
  • Patent number: 4764244
    Abstract: Microminiature resonant sensor structures are prepared according to micromachining/microfabrication techniques, which structures include thin-film deposits of piezoelectric materials. Such piezoelectric deposits may be excited electrically by including metallized conductive paths during fabrication, or optically. The resonant frequency of the sensor structure is varied by subjecting it to a physical variable, or measurand, such as pressure, temperature, flow rate, etc. Similarly, the resonant frequency of the devices may be detected electrically or optically. The microminiature resonant structures include ribbons and wires, hollow beam and cantilevered hollow beams, and single- and double-ended double beam resonant structures such as tuning forks.
    Type: Grant
    Filed: June 11, 1985
    Date of Patent: August 16, 1988
    Assignee: The Foxboro Company
    Inventors: Gordon W. Chitty, Richard H. Morrison, Jr., Everett O. Olsen, John G. Panagou, Paul M. Zavracky