Patents by Inventor John H. Chiu

John H. Chiu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10018353
    Abstract: A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: July 10, 2018
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: John H. Chiu, Bard C. Teigen
  • Publication number: 20170130957
    Abstract: A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
    Type: Application
    Filed: September 17, 2015
    Publication date: May 11, 2017
    Inventors: John H. CHIU, Bard C. Teigen
  • Patent number: 9638418
    Abstract: In a method for operating a steam generator, a transport reactor is provided. Only a substantially pure oxygen feed stream is introduced into the transport reactor in an amount sufficient to maintain the transport reactor at or above a specific system load. The specific load is the system load when only the substantially pure oxygen feed stream is provided to the transport reactor at a minimum flow velocity for operating the transport reactor. A fuel is combusted in the presence of the substantially pure oxygen feed stream to produce a flue gas, which contains solid material. The solid material is separated from the flue gas and passed to a heat exchanger. The heat exchange may be one of a moving bed heat exchanger or a fluidized bed heat exchanger. The solid material is directed to the transport reactor to contribute to the combustion process.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: May 2, 2017
    Assignee: General Electric Technology GmbH
    Inventors: John H. Chiu, George D. Mylchreest
  • Publication number: 20160195265
    Abstract: A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
    Type: Application
    Filed: September 17, 2015
    Publication date: July 7, 2016
    Inventors: John H. CHIU, Bard C. Teigen
  • Patent number: 9163830
    Abstract: A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 20, 2015
    Assignee: ALSTOM Technology Ltd
    Inventors: John H. Chiu, Bard C. Teigen
  • Patent number: 8562933
    Abstract: A hot solids process selectively operable for purposes of generating at least one predetermined output based on what the specific nature of the primary purpose of the hot solids process is for which the at least one predetermined output that is selected from a multiplicity of predetermined outputs, such as H2 and CO2, is being produced, and wherein such primary purpose of the hot solids process is designed to be pre-selected from a group of primary purposes of the hot solids process that includes at least two of the generation of H2 for electric power purposes, the generation of SynGas for electric power production as well as for other industrial uses, the production of steam for electric power generation as well as for other uses, the production of process heat, the production of CO2 for agricultural purposes, and the generation of a feedstock such as H2 for use for the production of liquid hydrocarbons.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 22, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Herbert E. Andrus, Jr., John. H. Chiu, Gregory N. Liljedahl, Paul R. Thibeault, Carl R. Bozzuto, Corinne Beal, Michal T. Bialkowski, Andreas Brautsch, Laurent Maghdissian, Michel Vandycke
  • Patent number: 8110012
    Abstract: In a retrofit system for hot solids combustion and gasification, a chemical looping system includes an endothermic reducer reactor 12 having at least one materials inlet 22 for introducing carbonaceous fuel and CaCO3 therein and a CaS/gas outlet 26. A first CaS inlet 40 and a first CaSO4 inlet 64 are also defined by the reducer reactor 12. An oxidizer reactor 14 is provided and includes an air inlet 68, a CaSO4/gas outlet 46, a second CaS inlet 44, and a second CaSO4 inlet 66. A first separator 30 is in fluid communication with the CaS/gas outlet 26 and includes a product gas and a CaS/gas outlet 32 and 34 from which CaS is introduced into said first and second CaS inlets. A second separator 50 is in fluid communication with the CaSO4/gas outlet 46 and has an outlet 52 for discharging gas therefrom, and a CaSO4 outlet from which CaSO4 is introduced into the first and second CaSO4 inlets 62, 66.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: February 7, 2012
    Assignee: ALSTOM Technology Ltd
    Inventors: John H. Chiu, Herbert E. Andrus, Gregory N. Liljedahl, Paul R. Thibeault
  • Publication number: 20100294180
    Abstract: In a method for operating a steam generator, a transport reactor is provided. Only a substantially pure oxygen feed stream is introduced into the transport reactor in an amount sufficient to maintain the transport reactor at or above a specific system load. The specific load is the system load when only the substantially pure oxygen feed stream is provided to the transport reactor at a minimum flow velocity for operating the transport reactor. A fuel is combusted in the presence of the substantially pure oxygen feed stream to produce a flue gas, which contains solid material. The solid material is separated from the flue gas and passed to a heat exchanger. The heat exchange may be one of a moving bed heat exchanger or a fluidized bed heat exchanger. The solid material is directed to the transport reactor to contribute to the combustion process.
    Type: Application
    Filed: May 19, 2009
    Publication date: November 25, 2010
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: John H. Chiu, George D. Mylchreest
  • Publication number: 20100288678
    Abstract: A hot solids process wherein a predetermined output, which is designed to be suitable for use as an input to a petrochemical process, is capable of being generated through the use of the hot solids process. The mode of operation of such a hot solids process is designed to be such that preferably a portion of the otherwise normally unusable product output, which is produced from a petrochemical process, is designed to be utilized as an input to the hot solids process for purposes of generating from the hot solids process the predetermined output that is suitable for use as an input to a petrochemical process.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 18, 2010
    Inventors: Herbert E. ANDRUS, JR., John H. CHIU, Gregory N. LILJEDAHL, Paul R. THIBEAULT, Carl R. BOZZUTO, Corinne BEAL, Michal T. BIALKOWSKI, Andreas BRAUTSCH, Laurent MAGHDISSIAN, Michel VANDYCKE
  • Publication number: 20100290975
    Abstract: A hot solids process operable selectively for combustion purposes and gasification purposes wherein a pre-identified product is selected from a group of products to be generated through the use of the hot solids process. Based on the nature of the pre-identified product, which is to be generated through the use of the hot solids process, a specific fuel from which the pre-identified product is capable of being derived is selected from a group of fuels. Then, from a group of reactors there is selected a first reactor, which is operable for generating in the first reactor the pre-identified product as an output from the first reactor. Thereafter, from a group of reactors, there is selected a second reactor, which is operable for effecting in the second reactor the conversion of air and of a predetermined carrier selected from a group of carriers to produce a predefined output from the second reactor.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 18, 2010
    Inventors: Herbert E. ANDRUS, JR., John H. CHIU, Gregory N. LILJEDAHL, Paul R. THIBEAULT, Carl R. BOZZUTO, Corinne BEAL, Michal T. BIALKOWSKI, Andreas BRAUTSCH, Laurent MAGHDISSIAN, Michel VANDYCKE
  • Publication number: 20100281769
    Abstract: A hot solids process selectively operable for purposes of generating a predetermined output based on the nature of the specific application for which the predetermined output is being produced, and wherein such specific application is designed to be pre-selected from a group of specific applications that includes a new steam generator application, a retrofit steam generator application, a CO2 capture ready Hot Solids Combustion application, a CO2 capture ready hot solids gasification application, a CO2 capture hot solids combustion application, a CO2 capture hot solids gasification application, a partial CO2 capture hot solids combustion application, and a partial CO2 capture hot solids gasification application.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 11, 2010
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: Herbert E. ANDRUS, JR., John H. CHIU, Gregory N. LILJEDAHL, Paul R. THIBEAULT, Carl R. BOZZUTO, Corinne BEAL, Michal T. BIALKOWSKI, Andreas BRAUTSCH, Laurent MAGHDISSIAN, Michel VANDYCKE
  • Publication number: 20100284894
    Abstract: A hot solids process selectively operable for purposes of generating at least one predetermined output based on what the specific nature of the primary purpose of the hot solids process is for which the at least one predetermined output that is selected from a multiplicity of predetermined outputs, such as H2 and CO2, is being produced, and wherein such primary purpose of the hot solids process is designed to be pre-selected from a group of primary purposes of the hot solids process that includes at least two of the generation of H2 for electric power purposes, the generation of SynGas for electric power production as well as for other industrial uses, the production of steam for electric power generation as well as for other uses, the production of process heat, the production of CO2 for agricultural purposes, and the generation of a feedstock such as H2 for use for the production of liquid hydrocarbons.
    Type: Application
    Filed: March 29, 2010
    Publication date: November 11, 2010
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: Herbert E. ANDRUS, JR., John. H. CHIU, Gregory N. LILJEDAHL, Paul R. THIBEAULT, Carl R. BOZZUTO, Corinne BEAL, Michal T. BIALKOWSKI, Andreas BRAUTSCH, Laurent MAGHDISSIAN, Michel VANDYCKE
  • Publication number: 20100242815
    Abstract: A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 30, 2010
    Applicant: ALSTOM TECHNOLOGY LTD
    Inventors: John H. Chiu, Bard C. Teigen
  • Publication number: 20100050654
    Abstract: In a retrofit system for hot solids combustion and gasification, a chemical looping system includes an endothermic reducer reactor 12 having at least one materials inlet 22 for introducing carbonaceous fuel and CaCO3 therein and a CaS/gas outlet 26. A first CaS inlet 40 and a first CaSO4 inlet 64 are also defined by the reducer reactor 12. An oxidizer reactor 14 is provided and includes an air inlet 68, a CaSO4/gas outlet 46, a second CaS inlet 44, and a second CaSO4 inlet 66. A first separator 30 is in fluid communication with the CaS/gas outlet 26 and includes a product gas and a CaS/gas outlet 32 and 34 from which CaS is introduced into said first and second CaS inlets. A second separator 50 is in fluid communication with the CaSO4/gas outlet 46 and has an outlet 52 for discharging gas therefrom, and a CaSO4 outlet from which CaSO4 is introduced into the first and second CaSO4 inlets 62, 66.
    Type: Application
    Filed: July 31, 2009
    Publication date: March 4, 2010
    Applicant: ALSTOM TECHNOLOGY LTD.
    Inventors: John H. Chiu, Herbert E. Andrus, Gregory N. Liljedahl, Paul R. Thibeault
  • Patent number: 6039008
    Abstract: There is provided a circulating fluidized bed steam generator (CFB) having an improved structural support system and an improved combined hot solids-gas separator for separating gas and solids from a combined gas-solids stream. The combined hot solids-gas separator is in the form of a cyclone assembly having a plurality of wall portions forming a separation chamber and an inlet for passage of a combined gas-solids stream into the separation chamber. The lowermost extent of the inlet forms a threshold over which the combined gas-solids stream flows in entering the separation chamber. The separation chamber is operable to separate the combined gas-solids stream into a predominantly gas exit stream and a predominantly solids exit stream in a manner by which separated out solids to be discharged from the separation chamber via the predominantly solids exit stream are collected within the separation chamber at a location lower than the inlet.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: March 21, 2000
    Assignee: Combustion Engineering, Inc.
    Inventors: David K. Anderson, John H. Chiu, Steven F. McNary, Nicole M. Phyfe, David G. Turek, Donald G. Mylchreest
  • Patent number: 5401130
    Abstract: A fluidized bed combustion system (10) particularly suited for use to effect the incineration, i.e., combustion, therewith of wood waste/sludge mixtures that have high moisture and ash content which makes them difficult to burn. The fluidized bed combustion system (10) includes a fluidized bed combustor (12) embodying a fluidized bed (24) composed of bed solids. Air is injected into the fluidized bed (24) through an air distributor (28) to establish a first controlled fluidizing velocity zone and a second controlled fluidizing velocity zone therewithin. Material (42b) is introduced into the fluidized bed combustor (12) above the second controlled fluidizing velocity zone. Bed solids are projected from the first controlled fluidizing velocity zone to the second controlled fluidizing velocity zone whereupon the bed solids rain down upon the material (42b) and effect a covering thereof. The material (42b) is then dried and thereafter combusted.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: March 28, 1995
    Assignee: Combustion Engineering, Inc.
    Inventors: John H. Chiu, Michael J. Hargrove, Glen D. Jukkola, Mark A. Douglas, Stuart A. Morrison, Steve Y. Wong