Patents by Inventor John H. Miller, Jr.

John H. Miller, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230409945
    Abstract: The disclosed qudits interchange the roles of linear and nonlinear in the nonlinear LC resonators formed by existing superconducting qudits. The disclosed qudits include a nonlinear capacitor (e.g., a material that forms charge density waves, a material that forms spin density waves, a ferroelectric material, an incipient ferroelectric material, or a quantum paraelectric material) coupled to a linear or nearly linear inductance (e.g., a high temperature superconductive coil, an array of Josephson junctions in series, etc.). The disclosed qudits can operate at significantly higher temperatures than existing quantum computing technologies due to reduced quasiparticle poisoning and collective quantum behavior that enhance thermal robustness. The disclosed qudits are also easier to manufacture uniformly at scale than existing qubits.
    Type: Application
    Filed: November 4, 2022
    Publication date: December 21, 2023
    Inventor: John H. Miller, JR.
  • Patent number: 11798721
    Abstract: A superconducting electromagnet and method for manufacturing, using, monitoring, and controlling same are disclosed. Embodiments are directed to a superconducting electromagnet that includes a superconductor tape including: a first unslotted end; a second unslotted end; and a longitudinally slotted section provided between the first unslotted end and the second unslotted end. The longitudinally slotted section includes a first longitudinal part and a second longitudinal part. The first longitudinal part is provided in a wound manner thereby defining a first coil. The second longitudinal part is provided in a wound manner thereby defining a second coil. These and other embodiments achieve persistent current operation of the superconducting electromagnet without the need for solder joints within the magnet coil itself, which can result in improved stability and reduced power consumption.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: October 24, 2023
    Assignee: University of Houston System
    Inventor: John H. Miller, Jr.
  • Publication number: 20190341179
    Abstract: A superconducting electromagnet and method for manufacturing, using, monitoring, and controlling same are disclosed. Embodiments are directed to a superconducting electromagnet that includes a superconductor tape including: a first unslotted end; a second unslotted end; and a longitudinally slotted section provided between the first unslotted end and the second unslotted end. The longitudinally slotted section includes a first longitudinal part and a second longitudinal part. The first longitudinal part is provided in a wound manner thereby defining a first coil. The second longitudinal part is provided in a wound manner thereby defining a second coil. These and other embodiments achieve persistent current operation of the superconducting electromagnet without the need for solder joints within the magnet coil itself, which can result in improved stability and reduced power consumption.
    Type: Application
    Filed: January 22, 2018
    Publication date: November 7, 2019
    Inventor: John H. Miller, JR.
  • Patent number: 5686351
    Abstract: The present invention provides for the fabrication of single layer semimetal/semiconductor heterostructures and multilayer semimetal/semiconductor structures. Each semimetal/semiconductor layer fabricated in accordance with the present invention has compatible crystal symmetry across the heterojunction between a semimetal and a semiconductor. A single layer semimetal/semiconductor structure is fabricated by growing a rhombohedral semimetal in a ?111! direction on a substrate material having a (111) orientation, and then growing a zincblende semiconductor in a ?111! direction on the semimetal. A multilayer semimetal/semiconductor structure may be grown from the single layer semimetal/semiconductor structure by growing an additional rhombohedral semimetal layer in a ?111! direction on the preceding semiconductor grown, then growing an additional zincblende semiconductor layer in a ?111!direction on the additional semimetal layer, and then repeating this process as many times as desired.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 11, 1997
    Assignee: The University of Houston
    Inventors: Terry D. Golding, John H. Miller, Jr.
  • Patent number: 5477377
    Abstract: The present invention relates to novel optical devices operating in the infrared, based on indirect narrow-gap superlattices (INGS) as the active optical materials. The novel optical devices include (1) wideband all-optical switches, which combine small insertion loss at low light intensities with efficient optical switching and optical limiting at high intensities, and (2) wideband infrared detectors with high collection efficiency and low tunneling noise currents, suitable for use in longwave infrared focal plane arrays. INGS comprise multiple semimetal/semiconductor layers having compatible crystal symmetry across each heterojunction between a given semimetal and the adjoining semiconductor, wherein each semimetal layer sandwiched between semiconductor layers is grown thin enough that each semimetal layer becomes a semiconductor, and wherein each semiconductor layer is thin enough that there is coupling between adjacent semiconductor layers.
    Type: Grant
    Filed: July 17, 1992
    Date of Patent: December 19, 1995
    Assignees: University of Houston, The United States of America as represented by the Secretary of the Navy
    Inventors: Terry D. Golding, John H. Miller, Jr., Jerry R. Meyer, Eric R. Youngdale, Filbert J. Bartoli, Craig A. Hoffman
  • Patent number: 5449561
    Abstract: The present invention provides for the fabrication of single layer semimetal/semiconductor heterostructures and multilayer semimetal/semiconductor structures. Each semimetal/semiconductor layer fabricated in accordance with the present invention has compatible crystal symmetry across the heterojunction between a semimetal and a semiconductor. A single layer semimetal/semiconductor structure is fabricated by growing a rhombohedral semimetal in a [111] direction on a substrate material having a (111) orientation, and then growing a zincblende semiconductor in a [111] direction on the semimetal. A multilayer semimetal/semiconductor structure may be grown from the single layer semimetal/semiconductor structure by growing an additional rhombohedral semimetal layer in a [111] direction on the preceding semiconductor grown, then growing an additional zincblende semiconductor layer in a [111] direction on the additional semimetal layer, and then repeating this process as many times as desired.
    Type: Grant
    Filed: July 17, 1992
    Date of Patent: September 12, 1995
    Assignee: University of Houston
    Inventors: Terry D. Golding, John H. Miller, Jr.
  • Patent number: 5326986
    Abstract: A physical configuration for a parallel multi-junction superconducting quantum interference device that can be used for a variety of applications involving the detection of magnetic flux, including applications where it is desired to measure the absolute magnitude of the flux. The device of this invention features a novel geometry for a multi-junction interference device which significantly enhances the flux-to-voltage transfer function, thereby yielding a significant improvement in the device sensitivity in its use in a magnetometer, gradiometer, or other applications.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: July 5, 1994
    Assignee: University of Houston - University Park
    Inventors: John H. Miller, Jr., Terry D. Golding, Jaiming Huang