Patents by Inventor John H. Vanderslice

John H. Vanderslice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7273045
    Abstract: The present invention is a dual-stage fuel injection strategy for compression ignition engines in which 15-40% of the fuel is injected into the combustion chamber no later than about ?20 to ?30 CA ATDC and as early as IVC. The remaining fuel is then injected in one or more fuel pulses, none of which start before about ?20 to ?30 CA ATDC. The fuel injected early in the compression stroke forms a lean mixture that burns with low soot and low NOx emissions. The combustion of that fuel serves to increase in-cylinder temperature such that the ignition delay of subsequent fuel injection pulses is short. This mode is utilized when it is predicted that a NOx spike is imminent. Various other alternative methods for reducing NOx spikes are also disclosed such as specialized EGR systems that can provide EGR with low manifold vacuum.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: September 25, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Matthew Kurtz, John H. Vanderslice
  • Patent number: 6820599
    Abstract: The present invention is a dual-stage fuel injection strategy for compression ignition engines in which 15-40% of the fuel is injected into the combustion chamber no later than about −20 to −30 CA ATDC and as early as IVC. The remaining fuel is then injected in one or more fuel pulses, none of which start before about −20 to −30 CA ATDC. The fuel injected early in the compression stroke forms a lean mixture that burns with low soot and low NOx emissions. The combustion of that fuel serves to increase in-cylinder temperature such that the ignition delay of subsequent fuel injection pulses is short. This mode is utilized when it is predicted that a NOx spike is imminent. Various other alternative methods for reducing NOx spikes are also disclosed such as specialized EGR systems that can provide EGR with low manifold vacuum.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: November 23, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Matthew Kurtz, John H. Vanderslice
  • Publication number: 20040149272
    Abstract: The present invention is a dual-stage fuel injection strategy for compression ignition engines in which 15-40% of the fuel is injected into the combustion chamber no later than about −20 to −30 CA ATDC and as early as IVC. The remaining fuel is then injected in one or more fuel pulses, none of which start before about −20 to −30 CA ATDC. The fuel injected early in the compression stroke forms a lean mixture that burns with low soot and low NOx emissions. The combustion of that fuel serves to increase in-cylinder temperature such that the ignition delay of subsequent fuel injection pulses is short. This mode is utilized when it is predicted that a NOx spike is imminent. Various other alternative methods for reducing NOx spikes are also disclosed such as specialized EGR systems that can provide EGR with low manifold vacuum.
    Type: Application
    Filed: February 3, 2003
    Publication date: August 5, 2004
    Applicant: FORD GLOBAL TECHNOLOGIES, INC.
    Inventors: Eric Matthew Kurtz, John H. Vanderslice
  • Patent number: 6269633
    Abstract: An engine exhaust aftertreatment system is described in which lean NOx, exhaust aftertreatment devices are employed. Because temperature in the exhaust line varies as a function of distance from the engine and engine operating condition, exhaust aftertreatment devices are situated along the exhaust line to ensure that at least one of said exhaust aftertreatment devices operates at a temperature of high NOx conversion efficiency. Reductant quantity is scheduled by the engine's control unit to be supplied to the exhaust aftertreatment devices based on available information provided by sensors or embedded engine control unit models, including: temperature in the exhaust aftertreatment devices, available reductant in the exhaust stream, reductant storage in the exhaust aftertreatment devices, maximum adsorption capacity of the exhaust aftertreatment devices, engine operating conditions, and NOx, concentration.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: August 7, 2001
    Assignee: Ford Global Technologies, Inc.
    Inventors: Michiel Jacques van Nieuwstadt, Fazal Urrahman. Syed, John H. Vanderslice, Siamak Hashemi
  • Patent number: RE42609
    Abstract: The present invention is a dual-stage fuel injection strategy for compression ignition engines in which 15-40% of the fuel is injected into the combustion chamber no later than about ?20 to ?30 CA ATDC and as early as IVC. The remaining fuel is then injected in one or more fuel pulses, none of which start before about ?20 to ?30 CA ATDC. The fuel injected early in the compression stroke forms a lean mixture that burns with low soot and low NOx emissions. The combustion of that fuel serves to increase in-cylinder temperature such that the ignition delay of subsequent fuel injection pulses is short. This mode is utilized when it is predicted that a NOx spike is imminent. Various other alternative methods for reducing NOx spikes are also disclosed such as specialized EGR systems that can provide EGR with low manifold vacuum.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 16, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Eric Matthew Kurtz, John H. Vanderslice