Patents by Inventor John Hsieh

John Hsieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11100481
    Abstract: Embodiments of the invention are related to a computer-implemented authentication method and system for authenticating a customer using an electronic device for engaging in a transaction involving a financial institution over a network. Embodiments of the method include capturing an image of the customer engaging in the transaction using an image capturing device integrated with the electronic device and retrieving a stored image of the customer from an authentication database. Embodiments of the invention additionally include comparing, using a comparison algorithm executed by computer processing components, the stored image with the captured image to authenticate the customer and upon authentication, monitoring the captured image during the transaction for an interruption using the computer processing components. The method further includes terminating the transaction if an interruption is detected.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 24, 2021
    Assignee: JPMORGAN CHASE BANK, N.A.
    Inventors: Brad X. Lucas, John Hsieh, Ravi Acharya, Sih Lee
  • Patent number: 10802232
    Abstract: An example optoelectronic module includes a housing that extends between a first end portion and a second end portion. The optoelectronic module includes a printed circuit board (“PCB”) that includes an electrical connector at the second end portion of the housing, at least one transmitter electrically coupled to the PCB and optically coupled with at least one optical fiber, at least one receiver electrically coupled to the PCB and optically coupled with at least one optical fiber, and at least one electromagnetic interference (“EMI”) attenuating component formed of a plastic material that is configured to attenuate EMI. The EMI attenuating component is configured to attenuate EMI generated by one or more other components of the optoelectronic module.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: October 13, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Tat Ming Teo, John Hsieh, William H. Wang, Jinxiang Liu, Hon Siu Wee, Troy Wy Piew Chiang
  • Publication number: 20190347632
    Abstract: Embodiments of the invention are related to a computer-implemented authentication method and system for authenticating a customer using an electronic device for engaging in a transaction involving a financial institution over a network. Embodiments of the method include capturing an image of the customer engaging in the transaction using an image capturing device integrated with the electronic device and retrieving a stored image of the customer from an authentication database. Embodiments of the invention additionally include comparing, using a comparison algorithm executed by computer processing components, the stored image with the captured image to authenticate the customer and upon authentication, monitoring the captured image during the transaction for an interruption using the computer processing components. The method further includes terminating the transaction if an interruption is detected.
    Type: Application
    Filed: July 24, 2019
    Publication date: November 14, 2019
    Applicant: JPMorgan Chase Bank, N.A.
    Inventors: Brad X. LUCAS, John HSIEH, Ravi ACHARYA, Sih LEE
  • Publication number: 20190346642
    Abstract: An example optoelectronic module includes a housing that extends between a first end portion and a second end portion. The optoelectronic module includes a printed circuit board (“PCB”) that includes an electrical connector at the second end portion of the housing, at least one transmitter electrically coupled to the PCB and optically coupled with at least one optical fiber, at least one receiver electrically coupled to the PCB and optically coupled with at least one optical fiber, and at least one electromagnetic interference (“EMI”) attenuating component formed of a plastic material that is configured to attenuate EMI. The EMI attenuating component is configured to attenuate EMI generated by one or more other components of the optoelectronic module.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: Tat Ming Teo, John Hsieh, William H. Wang, Jinxiang Liu, Hon Siu Wee, Troy Wy Piew Chiang
  • Patent number: 10402800
    Abstract: Embodiments of the invention are related to a computer-implemented authentication method and system for authenticating a customer using an electronic device for engaging in a transaction involving a financial institution over a network. Embodiments of the method include capturing an image of the customer engaging in the transaction using an image capturing device integrated with the electronic device and retrieving a stored image of the customer from an authentication database. Embodiments of the invention additionally include comparing, using a comparison algorithm executed by computer processing components, the stored image with the captured image to authenticate the customer and upon authentication, monitoring the captured image during the transaction for an interruption using the computer processing components. The method further includes terminating the transaction if an interruption is detected.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: September 3, 2019
    Assignee: JPMORGAN CHASE BANK, N.A.
    Inventors: Brad X. Lucas, John Hsieh, Ravi Acharya, Sih Lee
  • Patent number: 10359586
    Abstract: An example optoelectronic module includes a housing that extends between a first end portion and a second end portion. The optoelectronic module includes a printed circuit board (“PCB”) that includes an electrical connector at the second end portion of the housing, at least one transmitter electrically coupled to the PCB and optically coupled with at least one optical fiber, at least one receiver electrically coupled to the PCB and optically coupled with at least one optical fiber, and at least one electromagnetic interference (“EMI”) attenuating component formed of a plastic material that is configured to attenuate EMI. The EMI attenuating component is configured to attenuate EMI generated by one or more other components of the optoelectronic module.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: July 23, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Tat Ming Teo, John Hsieh, William H. Wang, Jinxiang Liu, Hon Siu Wee, Troy Wy Piew Chiang
  • Publication number: 20170097484
    Abstract: An example optoelectronic module includes a housing that extends between a first end portion and a second end portion. The optoelectronic module includes a printed circuit board (“PCB”) that includes an electrical connector at the second end portion of the housing, at least one transmitter electrically coupled to the PCB and optically coupled with at least one optical fiber, at least one receiver electrically coupled to the PCB and optically coupled with at least one optical fiber, and at least one electromagnetic interference (“EMI”) attenuating component formed of a plastic material that is configured to attenuate EMI. The EMI attenuating component is configured to attenuate EMI generated by one or more other components of the optoelectronic module.
    Type: Application
    Filed: October 2, 2015
    Publication date: April 6, 2017
    Inventors: Tat Ming Teo, John Hsieh, William H. Wang, Jinxiang Liu, Hon Siu Wee, Troy Wy Piew Chiang
  • Patent number: 8762714
    Abstract: An optical transceiver module is authenticated in a host system. A host generates a data string and writes the data string to a first predetermined memory location known to the transceiver. The data string is cryptographically altered (either encrypted or decrypted) by the transceiver and written to a second predetermined memory location known to the host. The host retrieves the cryptographically altered data string and performs a complementary cryptographic operation (either a decryption or encryption, respectively) thereon, creating a resulting data string. If the resulting data string is equal to the data string written to the first predetermined memory location, the transceiver is authenticated. The host and the transceiver may switch roles, with the transceiver generating the data string, the host cryptographically altering it, and so on. The host encrypts data strings when the transceiver decrypts data strings, and vice versa.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: June 24, 2014
    Assignee: Finisar Corporation
    Inventor: John Hsieh
  • Patent number: 8750711
    Abstract: Systems and methods for performing closed-loop diagnostics in optical transceiver. The TOSA of an optical receiver includes a primary transmit module and a secondary receiver module. The transmit module transmits a data signal to a ROSA of another optical transceiver. The ROSA has a secondary transmit module that can transmit a diagnostic data signal back to the secondary receiver module of the TOSA. The TOSA can use the diagnostic data received from the ROSA to automatically adjust itself and perform closed-loop feedback functions. The closed loop diagnostics can be implemented in a network where one transceiver may be connected with more than one other transceiver in a multi-node configuration.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: June 10, 2014
    Assignee: Finisar Corporation
    Inventor: John Hsieh
  • Publication number: 20130246264
    Abstract: Embodiments of the invention are related to a computer-implemented authentication method and system for authenticating a customer using an electronic device for engaging in a transaction involving a financial institution over a network. Embodiments of the method include capturing an image of the customer engaging in the transaction using an image capturing device integrated with the electronic device and retrieving a stored image of the customer from an authentication database. Embodiments of the invention additionally include comparing, using a comparison algorithm executed by computer processing components, the stored image with the captured image to authenticate the customer and upon authentication, monitoring the captured image during the transaction for an interruption using the computer processing components. The method further includes terminating the transaction if an interruption is detected.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 19, 2013
    Applicant: JPMorgan Chase Bank, N.A.
    Inventors: Brad X. Lucas, John Hsieh, Ravi Acharya, Sih Lee
  • Patent number: 8494961
    Abstract: Embodiments of the invention are related to a computer-implemented authentication method and system for authenticating a customer using an electronic device for engaging in a transaction involving a financial institution over a network. Embodiments of the method include capturing an image of the customer engaging in the transaction using an image capturing device integrated with the electronic device and retrieving a stored image of the customer from an authentication database. Embodiments of the invention additionally include comparing, using a comparison algorithm executed by computer processing components, the stored image with the captured image to authenticate the customer and upon authentication, monitoring the captured image during the transaction for an interruption using the computer processing components. The method further includes terminating the transaction if an interruption is detected.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 23, 2013
    Assignee: JPMorgan Chase Bank, N.A.
    Inventors: Brad X. Lucas, John Hsieh, Ravi Acharya, Sih Lee
  • Publication number: 20130151421
    Abstract: Embodiments of this invention relate generally to updating a project plan in accordance with an input. A user may have a limited set of privileges to update the project plan compared to a manager. The manager may provide a threshold value relating to a type of change that may be made to a master version project plan. Next, the user may access the master project plan, and provide an input relating to a proposed change. From the change, a change value may be derived, and the change value may be compared to the threshold value to determine whether the change value violates the threshold value. If the change value violates the threshold value, a change exception may be generated, and the manager may be notified that the proposed change requires review. If the change value does not violate the threshold value, then the master project plan may be immediately updated.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: Oracle International Corporation
    Inventors: Kristine Lois Van Der Ploeg, Sivakumar Sundaresan, John Hsieh, Kiran Mundy, Satya Anur, Priyanka Shetye, Margaret Wasowicz, William Caine, Bormi Shin
  • Patent number: 8233793
    Abstract: An optoelectronic device uses microcode to perform an end of life calculation for the optoelectronic device. In a disclosed example, the optoelectronic device senses environmental and operational parameters under changing conditions during device operation. The optoelectronic device then calculates the end of life for itself based on one or more of the sensed environmental and/or operational parameters. The calculation can be done in real time and using digital logic. The calculation can provide a result in a format which is useful to a host system with which the device is connected. The optoelectronic device may automatically shut itself down upon reaching its calculated end of life.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: July 31, 2012
    Assignee: Finisar Corporation
    Inventors: Stephen Nelson, Kishore Kamath, John Hsieh
  • Publication number: 20110305454
    Abstract: Systems and methods for performing closed-loop diagnostics in optical transceiver. The TOSA of an optical receiver includes a primary transmit module and a secondary receiver module. The transmit module transmits a data signal to a ROSA of another optical transceiver. The ROSA has a secondary transmit module that can transmit a diagnostic data signal back to the secondary receiver module of the TOSA. The TOSA can use the diagnostic data received from the ROSA to automatically adjust itself and perform closed-loop feedback functions. The closed loop diagnostics can be implemented in a network where one transceiver may be connected with more than one other transceiver in a multi-node configuration.
    Type: Application
    Filed: August 15, 2011
    Publication date: December 15, 2011
    Applicant: FINISAR CORPORATION
    Inventor: John Hsieh
  • Patent number: 8000607
    Abstract: Systems and methods for performing closed-loop diagnostics in optical transceiver. The TOSA of an optical receiver includes a primary transmit module and a secondary receiver module. The transmit module transmits a data signal to a ROSA of another optical transceiver. The ROSA has a secondary transmit module that can transmit a diagnostic data signal back to the secondary receiver module of the TOSA. The TOSA can use the diagnostic data received from the ROSA to automatically adjust itself and perform closed-loop feedback functions. The closed loop diagnostics can be implemented in a network where one transceiver may be connected with more than one other transceiver in a multi-node configuration.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: August 16, 2011
    Assignee: Finisar Corporation
    Inventor: John Hsieh
  • Publication number: 20110182571
    Abstract: An optoelectronic device uses microcode to perform an end of life calculation for the optoelectronic device. In a disclosed example, the optoelectronic device senses environmental and operational parameters under changing conditions during device operation. The optoelectronic device then calculates the end of life for itself based on one or more of the sensed environmental and/or operational parameters. The calculation can be done in real time and using digital logic. The calculation can provide a result in a format which is useful to a host system with which the device is connected. The optoelectronic device may automatically shut itself down upon reaching its calculated end of life.
    Type: Application
    Filed: April 4, 2011
    Publication date: July 28, 2011
    Applicant: FINISAR CORPORATION
    Inventors: Stephen Nelson, Kishore Kamath, John Hsieh
  • Patent number: 7920788
    Abstract: An optoelectronic device uses microcode to perform an end of life calculation for the optoelectronic device. In particular, the optoelectronic device senses environmental and operational parameters under changing conditions during device operation. The optoelectronic device then calculates the end of life for itself based on one or more of the sensed environmental and/or operational parameters. The calculation can be done in real time and using digital logic. The calculation can provide a result in a format which is useful to a host system with which the device is connected. The optoelectronic device may automatically shut itself down upon reaching its calculated end of life.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: April 5, 2011
    Assignee: Finisar Corporation
    Inventors: Stephen Nelson, Kishore Kamath, John Hsieh
  • Patent number: 7860399
    Abstract: Systems and methods for validating a data link between two communication modules, such as optical transceiver modules configured for bidirectional optical communication, are disclosed. In one embodiment a method according to the invention includes a first optical transceiver module transmitting a first validation optical signal to a second optical transceiver module via an optical waveguide, such as an optical fiber, that physically interconnects both transceivers. The first validation optical signal is received by the second optical transceiver module, which lights an indicator light on its housing and returns a second validation optical signal to the first optical transceiver module. Upon receipt of the signal, the first transceiver lights its indicator light and enables data transfer to occur between both transceivers.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: December 28, 2010
    Assignee: Finisar Corporation
    Inventor: John Hsieh
  • Patent number: 7682090
    Abstract: An integrated reflecting and focusing structure for use in optical transmitters and receivers to redirect optical signals when an optoelectronic device of the transmitter or receiver is positioned in an off-center relationship with respect to an intended light path is disclosed. The integrated reflecting and focusing structure simplifies construction while reducing complexity of the device. In one embodiment, an optical subassembly is disclosed and includes a housing and an optical fiber that is coupled to the housing. An optoelectronic component, such as a laser diode, is positioned in the housing and is configured to produce a light beam. The subassembly further includes an integrated focusing and reflecting prism that serves as a means for simultaneously redirecting and focusing the light beam while in transit between the laser diode and the optical fiber. The focusing feature combined with redirection of the light beam obviates the need for a separate lens assembly.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: March 23, 2010
    Assignee: Finisar Corporation
    Inventors: Qin Chen, John Hsieh
  • Publication number: 20080267408
    Abstract: An optical transceiver module is authenticated in a host system. A host generates a data string and writes the data string to a first predetermined memory location known to the transceiver. The data string is cryptographically altered (either encrypted or decrypted) by the transceiver and written to a second predetermined memory location known to the host. The host retrieves the cryptographically altered data string and performs a complementary cryptographic operation (either a decryption or encryption, respectively) thereon, creating a resulting data string. If the resulting data string is equal to the data string written to the first predetermined memory location, the transceiver is authenticated. The host and the transceiver may switch roles, with the transceiver generating the data string, the host cryptographically altering it, and so on. The host encrypts data strings when the transceiver decrypts data strings, and vice versa.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 30, 2008
    Applicant: FINISAR CORPORATION
    Inventor: John Hsieh