Patents by Inventor John J. Boyle

John J. Boyle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10401156
    Abstract: A computer-implemented method for determining a quantification of the deformation of the sample is implemented using a computer device in communication with a memory. The method includes receiving, by the computer device, a first image of the sample and a second image of the sample. The method also includes registering the first image to the second image using a warping function. The warping function maps a plurality of pixels in the first image to a plurality of pixels in the second image. A first displacement field for the sample is determined based on the warping function, where the first displacement field includes at least a portion of the warping function. A first quantification of the deformation of the sample is determined based at least in part on the displacement field.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: September 3, 2019
    Assignee: WASHINGTON UNIVERSITY
    Inventors: John J. Boyle, Guy M. Genin, Maiko Kume, Robert B. Pless, Stavros Thomopoulos
  • Publication number: 20190219382
    Abstract: A computer-implemented method for determining a quantification of the deformation of the sample is implemented using a computer device in communication with a memory. The method includes receiving, by the computer device, a first image of the sample and a second image of the sample. The method also includes registering the first image to the second image using a warping function. The warping function maps a plurality of pixels in the first image to a plurality of pixels in the second image. A first displacement field for the sample is determined based on the warping function, where the first displacement field includes at least a portion of the warping function. A first quantification of the deformation of the sample is determined based at least in part on the displacement field.
    Type: Application
    Filed: August 23, 2018
    Publication date: July 18, 2019
    Applicant: WASHINGTON UNIVERSITY
    Inventors: John J. Boyle, Guy M. Genin, Maiko Kume, Robert B. Pless, Stavros Thomopoulos
  • Patent number: 10072924
    Abstract: A computer-implemented method for determining a quantification of the deformation of the sample is implemented using a computer device in communication with a memory. The method includes receiving, by the computer device, a first image of the sample and a second image of the sample. The method also includes registering the first image to the second image using a warping function. The warping function maps a plurality of pixels in the first image to a plurality of pixels in the second image. A first displacement field for the sample is determined based on the warping function, where the first displacement field includes at least a portion of the warping function. A first quantification of the deformation of the sample is determined based at least in part on the displacement field.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 11, 2018
    Assignee: WASHINGTON UNIVERSITY
    Inventors: John J. Boyle, Guy M. Genin, Maiko Kume, Robert B. Pless, Stavros Thomopoulos
  • Publication number: 20180066936
    Abstract: A computer-implemented method for determining a quantification of the deformation of the sample is implemented using a computer device in communication with a memory. The method includes receiving, by the computer device, a first image of the sample and a second image of the sample. The method also includes registering the first image to the second image using a warping function. The warping function maps a plurality of pixels in the first image to a plurality of pixels in the second image. A first displacement field for the sample is determined based on the warping function, where the first displacement field includes at least a portion of the warping function. A first quantification of the deformation of the sample is determined based at least in part on the displacement field.
    Type: Application
    Filed: March 17, 2015
    Publication date: March 8, 2018
    Inventors: John J. Boyle, Guy M. Genin, Maiko Kume, Robert B. Pless, Stavros Thomopoulos
  • Patent number: 9733087
    Abstract: A star camera system that includes an optical system configured to focus radiation from a star to be imaged onto a collector. Specifically, the collector is in the form of an electron bombarded active pixel sensor (EBAPS) configured to provide high gain. The EBAPS comprising a photocathode disposed in a vacuum is configured to release electron into a vacuum when exposed to radiation focused thereon by the optical system. In addition, the EBAPS includes an active pixel sensor anode disposed distant from the photocathode in the vacuum. An electric field is generated by a voltage source to direct electrons from the photocathode to the active pixel sensor anode to thereby generate an image of the star.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 15, 2017
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Gregory Blasche, John J. Boyle, Paul Bohn, Robin M. Dawson, Benjamin F. Lane, Erik L. Waldron, Stephen P. Smith
  • Patent number: 9648252
    Abstract: A star camera system that includes an optical system configured to focus radiation from a star to be imaged onto a collector that is in the form of an electron bombarded active pixel sensor (EBAPS) configured to provide high gain. The EBAPS comprising a photocathode disposed in a vacuum is configured to release electrons into the vacuum when exposed to radiation focused thereon by the optical system. The EBAPS includes an active pixel sensor anode disposed distant from the photocathode in the vacuum. An electric field is generated by a voltage source to direct the electrons from the photocathode to the active pixel sensor anode. Furthermore, the collector is mounted on a translation device configured to move the collector relative to the optical system by a predetermined amount of less than pixel size in the focal plane of the optical system to increase image resolution of a plurality of images.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 9, 2017
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Gregory Blasche, John J. Boyle, Paul Bohn, Robin M. Dawson, Benjamin F. Lane, Erik L. Waldron
  • Publication number: 20170089689
    Abstract: A computer-implemented method for determining a quantification of the deformation of the sample is implemented using a computer device in communication with a memory. The method includes receiving, by the computer device, a first image of the sample and a second image of the sample. The method also includes registering the first image to the second image using a warping function. The warping function maps a plurality of pixels in the first image to a plurality of pixels in the second image. A first displacement field for the sample is determined based on the warping function, where the first displacement field includes at least a portion of the warping function. A first quantification of the deformation of the sample is determined based at least in part on the displacement field.
    Type: Application
    Filed: March 17, 2015
    Publication date: March 30, 2017
    Inventors: John J. Boyle, Guy M. Genin, Maiko Kume, Robert B. Pless, Stavros Thomopoulos
  • Publication number: 20140267755
    Abstract: A star camera system that includes an optical system configured to focus radiation from a star to be imaged onto a collector that is in the form of an electron bombarded active pixel sensor (EBAPS) configured to provide high gain. The EBAPS comprising a photocathode disposed in a vacuum is configured to release electrons into the vacuum when exposed to radiation focused thereon by the optical system. The EBAPS includes an active pixel sensor anode disposed distant from the photocathode in the vacuum. An electric field is generated by a voltage source to direct the electrons from the photocathode to the active pixel sensor anode. Furthermore, the collector is mounted on a translation device configured to move the collector relative to the optical system by a predetermined amount of less than pixel size in the focal plane of the optical system to increase image resolution of a plurality of images.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Gregory Blasche, John J. Boyle, Paul Bohn, Robin M. Dawson, Benjamin F. Lane, Erik L. Waldron
  • Publication number: 20140267641
    Abstract: A star camera system that includes an optical system configured to focus radiation from a star to be imaged onto a collector. Specifically, the collector is in the form of an electron bombarded active pixel sensor (EBAPS) configured to provide high gain. The EBAPS comprising a photocathode disposed in a vacuum is configured to release electron into a vacuum when exposed to radiation focused thereon by the optical system. In addition, the EBAPS includes an active pixel sensor anode disposed distant from the photocathode in the vacuum. An electric field is generated by a voltage source to direct electrons from the photocathode to the active pixel sensor anode to thereby generate an image of the star.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Juha-Pekka J. Laine, Gregory Blasche, John J. Boyle, Paul Bohn, Robin M. Dawson, Benjamin F. Lane, Erik L. Waldron, Stephen P. Smith
  • Patent number: 7819010
    Abstract: A device for destruction-free testing of ferromagnetic component walls with respect to elongate defects has a sending transducer that excites ultrasound waves in a wall area of a ferromagnetic component wall magnetized in a predetermined direction of magnetization. The ultrasound waves propagate on a path oriented by the sending transducer. A receiving transducer receives the ultrasound waves at a spacing from the sending transducer. The configuration of the sending transducer and a high frequency emitted by the sending transducer, which high frequency is to be determined based on a thickness of the ferromagnetic component wall, are selected so as to effect excitation of horizontal shear waves of higher order. The path orientation is selected at a slant angle to the predetermined direction of magnetization. The receiving transducer is positioned lateral to the path and is oriented toward a predetermined testing area of the wall section in the path.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: October 26, 2010
    Assignee: Rosen Swiss AG
    Inventors: George A. Alers, Ronald B. Alers, John J. Boyle, Thomas Beuker
  • Publication number: 20090078048
    Abstract: A device for destruction-free testing of ferromagnetic component walls with respect to elongate defects has a sending transducer that excites ultrasound waves in a wall area of a ferromagnetic component wall magnetized in a predetermined direction of magnetization. The ultrasound waves propagate on a path oriented by the sending transducer. A receiving transducer receives the ultrasound waves at a spacing from the sending transducer. The configuration of the sending transducer and a high frequency emitted by the sending transducer, which high frequency is to be determined based on a thickness of the ferromagnetic component wall, are selected so as to effect excitation of horizontal shear waves of higher order. The path orientation is selected at a slant angle to the predetermined direction of magnetization. The receiving transducer is positioned lateral to the path and is oriented toward a predetermined testing area of the wall section in the path.
    Type: Application
    Filed: December 21, 2005
    Publication date: March 26, 2009
    Inventors: George A. Alers, Ronald B. Alers, John J. Boyle, Thomas Beuker
  • Patent number: 6204090
    Abstract: An integrated circuit (IC) die carrier assembly includes a thinned IC die mounted to a substrate or carrier. The IC die is mounted to the carrier via a thin layer of glass. The carrier facilitates fixturing and provides support during the lapping process used to thin the die. Ball bonding, wire bonding, thin film or thick film conductors can be used to interconnect the pads on the IC die to the pads on the carrier. The coefficients of the thermal expansion of the IC die and the carrier are closely matched to avoid damage to the IC die due to uneven expansion of the thinned IC die relative to the carrier. The IC die carrier assembly is better suited for ultrahigh vacuum and high temperature environments than conventional IC die carrier assemblies.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: March 20, 2001
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: John J. Boyle, William L. Robbins
  • Patent number: 6020646
    Abstract: An integrated circuit (IC) die carrier assembly includes a thinned IC die mounted to a substrate or carrier. The IC die is mounted to the carrier via a thin layer of glass. The carrier facilitates fixturing and provides support during the lapping process used to thin the die. Ball bonding, wire bonding, thin film or thick film conductors can be used to interconnect the pads on the IC die to the pads on the carrier. The coefficients of the thermal expansion of the IC die and the carrier are closely matched to avoid damage to the IC die due to uneven expansion of the thinned IC die relative to the carrier. The IC die carrier assembly is better suited for ultrahigh vacuum and high temperature environments than conventional IC die carrier assemblies.
    Type: Grant
    Filed: December 5, 1997
    Date of Patent: February 1, 2000
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: John J. Boyle, William L. Robbins
  • Patent number: 4763499
    Abstract: A door security system for the protection of a lock as well as a set of hinges both associated with a door wherein the security system includes a wrap-around cover plate covering surface portions of the exterior and interior of the door adjacent the lock and the lock side surface around the bolt plate of the lock. In addition, structures designed to protect each of the plurality of hinges serving to hang the door on the hinge jamb thereof include a wrap-around cover plate and hinge pin fittings on the inside of the door and a jamb plate and a vertical bar attached to an exterior section which includes a bar surface that is adjacent to a vertically extensive, exterior surface end region of the hinge cover plate when the door is closed.
    Type: Grant
    Filed: April 7, 1987
    Date of Patent: August 16, 1988
    Inventor: John J. Boyle