Patents by Inventor John J. Bozek

John J. Bozek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067778
    Abstract: The present disclosure relates to silicone-coated mineral wool insulation materials, methods for making them using specific coating methods, and methods for using them. One aspect of the disclosure is a method for making a silicone-coated mineral wool, the method comprising: providing a mineral wool comprising a collection of mineral wool fibers; applying to the mineral wool a solvent-borne coating composition comprising a silicone, the silicone of the coating composition having a number-average molecular weight of at least 25 kDa; and allowing the solvent to evaporate to provide silicone-coated mineral wool.
    Type: Application
    Filed: September 5, 2023
    Publication date: February 29, 2024
    Inventors: Pawan Saxena, Kevin J. Gallagher, John J. Bozek, Kathleen H. Saylor
  • Patent number: 11746192
    Abstract: The present disclosure relates to silicone-coated mineral wool insulation materials, methods for making them using specific coating methods, and methods for using them. One aspect of the disclosure is a method for making a silicone-coated mineral wool, the method comprising: providing a mineral wool comprising a collection of mineral wool fibers; applying to the mineral wool a solvent-borne coating composition comprising a silicone, the silicone of the coating composition having a number-average molecular weight of at least 25 kDa; and allowing the solvent to evaporate to provide silicone-coated mineral wool.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 5, 2023
    Assignee: CertainTeed LLC
    Inventors: Pawan Saxena, Kevin J. Gallagher, John J. Bozek, Kathleen H. Saylor
  • Patent number: 11668108
    Abstract: The present disclosure relates generally to an insulation-retaining sheet, e.g., for blown-in insulation, that includes an integral vapor-retarding membrane. In one aspect, the disclosure provides an insulation-retaining sheet including a sheet of mesh having an air permeability of at least 200 cfm per square foot; and one or more strips of vapor-retarding membrane, the one or more strips of vapor-retarding membrane being laminated to the sheet of mesh, the first side edge each of the strips of vapor-retarding membrane extending to the first side edge of the sheet of mesh, the second side edge each of the strips of vapor-retarding membrane extending to the second side edge of the sheet of mesh, wherein the insulation-retaining sheet has a plurality of open zones extending laterally from the first side edge of the sheet of mesh to the second side edge of the sheet of mesh in which no vapor-retarding membrane is laminated to the mesh.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: June 6, 2023
    Assignee: CertainTeed LLC
    Inventors: Bruce A. Hartzell, John J. Bozek, Michael J. Lembo, Valerio Massara
  • Publication number: 20220205256
    Abstract: The present disclosure relates generally to an insulation-retaining sheet, e.g., for blown-in insulation, that includes an integral vapor-retarding membrane. In one aspect, the disclosure provides an insulation-retaining sheet including a sheet of mesh having an air permeability of at least 200 cfm per square foot; and one or more strips of vapor-retarding membrane, the one or more strips of vapor-retarding membrane being laminated to the sheet of mesh, the first side edge each of the strips of vapor-retarding membrane extending to the first side edge of the sheet of mesh, the second side edge each of the strips of vapor-retarding membrane extending to the second side edge of the sheet of mesh, wherein the insulation-retaining sheet has a plurality of open zones extending laterally from the first side edge of the sheet of mesh to the second side edge of the sheet of mesh in which no vapor-retarding membrane is laminated to the mesh.
    Type: Application
    Filed: March 15, 2022
    Publication date: June 30, 2022
    Inventors: Bruce A. Hartzell, John J. Bozek, Michael J. Lembo, Valerio Massara
  • Patent number: 11274455
    Abstract: The present disclosure relates generally to an insulation-retaining sheet, e.g., for blown-in insulation, that includes an integral vapor-retarding membrane. In one aspect, the disclosure provides an insulation-retaining sheet including a sheet of mesh having an air permeability of at least 200 cfm per square foot; and one or more strips of vapor-retarding membrane, the one or more strips of vapor-retarding membrane being laminated to the sheet of mesh, the first side edge each of the strips of vapor-retarding membrane extending to the first side edge of the sheet of mesh, the second side edge each of the strips of vapor-retarding membrane extending to the second side edge of the sheet of mesh, wherein the insulation-retaining sheet has a plurality of open zones extending laterally from the first side edge of the sheet of mesh to the second side edge of the sheet of mesh in which no vapor-retarding membrane is laminated to the mesh.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: March 15, 2022
    Assignee: CertainTeed LLC
    Inventors: Bruce A. Hartzell, John J. Bozek, Michael J. Lembo, Valerio Massara
  • Publication number: 20200232232
    Abstract: The present disclosure relates generally to an insulation-retaining sheet, e.g., for blown-in insulation, that includes an integral vapor-retarding membrane. In one aspect, the disclosure provides an insulation-retaining sheet including a sheet of mesh having an air permeability of at least 200 cfm per square foot; and one or more strips of vapor-retarding membrane, the one or more strips of vapor-retarding membrane being laminated to the sheet of mesh, the first side edge each of the strips of vapor-retarding membrane extending to the first side edge of the sheet of mesh, the second side edge each of the strips of vapor-retarding membrane extending to the second side edge of the sheet of mesh, wherein the insulation-retaining sheet has a plurality of open zones extending laterally from the first side edge of the sheet of mesh to the second side edge of the sheet of mesh in which no vapor-retarding membrane is laminated to the mesh.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 23, 2020
    Inventors: Bruce A. Hartzell, John J. Bozek, Michael J. Lembo, Valerio Massara
  • Patent number: 10612251
    Abstract: The present disclosure relates generally to an insulation-retaining sheet, e.g., for blown-in insulation, that includes an integral vapor-retarding membrane. In one aspect, the disclosure provides an insulation-retaining sheet including a sheet of mesh having an air permeability of at least 200 cfm per square foot; and one or more strips of vapor-retarding membrane, the one or more strips of vapor-retarding membrane being laminated to the sheet of mesh, the first side edge each of the strips of vapor-retarding membrane extending to the first side edge of the sheet of mesh, the second side edge each of the strips of vapor-retarding membrane extending to the second side edge of the sheet of mesh, wherein the insulation-retaining sheet has a plurality of open zones extending laterally from the first side edge of the sheet of mesh to the second side edge of the sheet of mesh in which no vapor-retarding membrane is laminated to the mesh.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: April 7, 2020
    Assignee: CertainTeed Corporation
    Inventors: Bruce A. Hartzell, John J. Bozek, Michael J. Lembo, Valerio Massara
  • Publication number: 20190315935
    Abstract: The present disclosure relates to silicone-coated mineral wool insulation materials, methods for making them using specific coating methods, and methods for using them. One aspect of the disclosure is a method for making a silicone-coated mineral wool, the method comprising: providing a mineral wool comprising a collection of mineral wool fibers; applying to the mineral wool a solvent-borne coating composition comprising a silicone, the silicone of the coating composition having a number-average molecular weight of at least 25 kDa; and allowing the solvent to evaporate to provide silicone-coated mineral wool.
    Type: Application
    Filed: April 16, 2019
    Publication date: October 17, 2019
    Inventors: Pawan Saxena, Kevin J. Gallagher, John J. Bozek, Kathleen H. Saylor
  • Publication number: 20190093357
    Abstract: The present disclosure relates generally to an insulation-retaining sheet, e.g., for blown-in insulation, that includes an integral vapor-retarding membrane. In one aspect, the disclosure provides an insulation-retaining sheet including a sheet of mesh having an air permeability of at least 200 cfm per square foot; and one or more strips of vapor-retarding membrane, the one or more strips of vapor-retarding membrane being laminated to the sheet of mesh, the first side edge each of the strips of vapor-retarding membrane extending to the first side edge of the sheet of mesh, the second side edge each of the strips of vapor-retarding membrane extending to the second side edge of the sheet of mesh, wherein the insulation-retaining sheet has a plurality of open zones extending laterally from the first side edge of the sheet of mesh to the second side edge of the sheet of mesh in which no vapor-retarding membrane is laminated to the mesh.
    Type: Application
    Filed: September 26, 2018
    Publication date: March 28, 2019
    Inventors: Bruce A. Hartzell, John J. Bozek, Michael J. Lembo, Valerio Massara
  • Patent number: 10119004
    Abstract: A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: November 6, 2018
    Assignee: CERTAINTEED CORPORATION
    Inventors: Zoran S. Petrovic, Ivan J. Javni, Mihail Ionescu, Ivana Cvetkovic, Alisa Zlatanic, Nikola Bilic, Kwangjin Song, DooPyo Hong, John J. Bozek, Murray S. Toas
  • Publication number: 20170190863
    Abstract: A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
    Type: Application
    Filed: March 22, 2017
    Publication date: July 6, 2017
  • Patent number: 9617412
    Abstract: A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: April 11, 2017
  • Patent number: 9487654
    Abstract: A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: November 8, 2016
  • Publication number: 20150252185
    Abstract: A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
    Type: Application
    Filed: May 26, 2015
    Publication date: September 10, 2015
  • Publication number: 20130202793
    Abstract: A method of producing a foam is disclosed. The method includes providing an epoxy-containing compound, a cationic catalyst, an optional blowing agent, and at least one additive. The method further includes combining the epoxy-containing compound with the cationic catalyst, the optional blowing agent, and the at least one additive, wherein the epoxy-containing compound and the cationic catalyst react to polymerize the epoxy-containing compound to provide the foam having a density from about 0.3 lbs/ft3 to about 5.0 lbs/ft3 as measured by ASTM D1622. Further disclosed are the foam and a method for installing the foam.
    Type: Application
    Filed: December 28, 2012
    Publication date: August 8, 2013