Patents by Inventor John J. Hackenberg

John J. Hackenberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8258035
    Abstract: A method for making a transistor is provided which comprises (a) providing a semiconductor structure having a gate (211) overlying a semiconductor layer (203), and having at least one spacer structure (213) disposed adjacent to said gate; (b) removing a portion of the semiconductor structure adjacent to the spacer structure, thereby exposing a portion (215) of the semiconductor structure which underlies the spacer structure; and (c) subjecting the exposed portion of the semiconductor structure to an angled implant (253, 254).
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: September 4, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Leo Mathew, John J. Hackenberg, David C. Sing, Tab A. Stephens, Daniel G. Tekleab, Vishal P. Trivedi
  • Patent number: 7972922
    Abstract: A method of forming a semiconductor layer, which in one embodiment is part of a photodetector, includes forming a silicon shape, applying ozonated water, removing the first oxide layer at a temperature below 600 degrees Celsius, and epitaxially growing germanium. The silicon shape has a top surface that is exposed. The ozonated water is applied to the top surface and causes formation of a first oxide layer on the top surface. The germanium is grown on the top surface.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: July 5, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hunter J. Martinez, John J. Hackenberg, Jill Hildreth, Ross E. Noble
  • Publication number: 20100129952
    Abstract: A method of forming a semiconductor layer, which in one embodiment is part of a photodetector, includes forming a silicon shape, applying ozonated water, removing the first oxide layer at a temperature below 600 degrees Celsius, and epitaxially growing germanium. The silicon shape has a top surface that is exposed. The ozonated water is applied to the top surface and causes formation of a first oxide layer on the top surface. The germanium is grown on the top surface.
    Type: Application
    Filed: November 21, 2008
    Publication date: May 27, 2010
    Inventors: Hunter J. Martinez, John J. Hackenberg, Jill Hildreth, Ross E. Noble
  • Patent number: 7687370
    Abstract: A method for forming a semiconductor isolation trench includes forming a pad oxide layer over a substrate and forming a barrier layer over the substrate. A masking layer is formed over the barrier layer and is patterned to form at least one opening in the masking layer. At least a part of the barrier layer and at least a part of the pad oxide layer are etched through the at least one opening resulting in a trench pad oxide layer. Etching of the trench pad oxide layer stops substantially at a top surface of the substrate within the isolation trench. An oxide layer is grown by diffusion on at least the top surface of the substrate corresponding to the at least one isolation trench. The method further includes etching the oxide layer and at least a portion of the substrate to form at least one isolation trench opening.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: March 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Toni D. Van Gompel, John J. Hackenberg, Rode R. Mora, Suresh Venkatesan
  • Patent number: 7528029
    Abstract: A method is provided for making a semiconductor device. In accordance with the method, a substrate (203) is provided which has first (205) and second (207) gate structures thereon. A first stressor layer (215) is formed over the substrate, and a sacrificial layer (216) is formed over the first stressor layer. A second stressor layer (219) is formed over the sacrificial layer.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: May 5, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul A. Grudowski, Darren V. Goedekc, John J. Hackenberg
  • Publication number: 20080274600
    Abstract: A method for making a transistor is provided which comprises (a) providing a semiconductor structure having a gate (211) overlying a semiconductor layer (203), and having at least one spacer structure (213) disposed adjacent to said gate; (b) removing a portion of the semiconductor structure adjacent to the spacer structure, thereby exposing a portion (215) of the semiconductor structure which underlies the spacer structure; and (c) subjecting the exposed portion of the semiconductor structure to an angled implant (253, 254).
    Type: Application
    Filed: May 4, 2007
    Publication date: November 6, 2008
    Inventors: Leo Mathew, John J. Hackenberg, David C. Sing, Tab A. Stephens, Daniel G. Tekleab, Vishal P. Trivedi
  • Patent number: 7097714
    Abstract: The cleaning of particles from an electrostatic chuck. In one embodiment, a method of cleaning an electrostatic chuck in a processing chamber is disclosed. The method comprises directing a flow of gas across the electrostatic chuck to dislodge particles from the electrostatic chuck and removing the flow of gas and particles through an exhaust port in the processing chamber. In this embodiment, the vacuum integrity of the chamber is not compromised during the cleaning of the electrostatic chuck.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: August 29, 2006
    Assignee: Intersil Americas Inc.
    Inventor: John J. Hackenberg
  • Patent number: 6455379
    Abstract: A power trench MOS-gated transistor is constructed with a buried gate to source dielectric inside a gate trench region. In the innovative device, a thick oxide (grown or deposited) is used to define the height of the trench walls. A body region is initially formed by selective epitaxial growth and etch back. Source regions are formed also by selective epitaxial growth. The body is finally formed by selective epitaxial growth and etch back. The oxide is removed from the trench, the trench walls are oxidized to form a gate oxide, and doped polysilicon fills the trench to form a gate. By the formation of the source region using the spacer etch, this process simplifies the fabrication of power trench gated devices, and provides for increased contact surface area without increasing device size.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: September 24, 2002
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Linda S. Brush, Jun Zeng, John J. Hackenberg, Jack H. Linn, George V. Rouse
  • Publication number: 20010022379
    Abstract: A power trench MOS-gated transistor is constructed with a buried gate to source dielectric inside a gate trench region. In the innovative device, a thick oxide (grown or deposited) is used to define the height of the trench walls. A body region is initially formed by selective epitaxial growth and etch back. Source regions are formed also by selective epitaxial growth. The body is finally formed by selective epitaxial growth and etch back. The oxide is removed from the trench, the trench walls are oxidized to form a gate oxide, and doped polysilicon fills the trench to form a gate. By the formation of the source region using the spacer etch, this process simplifies the fabrication of power trench gated devices, and provides for increased contact surface area without increasing device size.
    Type: Application
    Filed: March 6, 2001
    Publication date: September 20, 2001
    Applicant: Intersil Corporation
    Inventors: Linda S. Brush, Jun Zeng, John J. Hackenberg, Jack H. Linn, George V. Rouse
  • Patent number: 6246090
    Abstract: A power trench MOS-gated transistor is constructed with a buried gate to source dielectric inside a gate trench region. In the innovative device, a thick oxide (grown or deposited) is used to define the height of the trench walls. A body region is initially formed by selective epitaxial growth and etch back. Source regions are formed also by selective epitaxial growth. The body is finally formed by selective epitaxial growth and etch back. The oxide is removed from the trench, the trench walls are oxidized to form a gate oxide, and doped polysilicon fills the trench to form a gate. By the formation of the source region using the spacer etch, this process simplifies the fabrication of power trench gated devices, and provides for increased contact surface area without increasing device size.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: June 12, 2001
    Assignee: Intersil Corporation
    Inventors: Linda S. Brush, Jun Zeng, John J. Hackenberg, Jack H. Linn, George V. Rouse
  • Patent number: 5837603
    Abstract: A method of smoothing irregularities in a surface of a semiconductor device using flowable particles which are dispersed onto the surface of the semiconductor device. The irregularities in the surface of the semiconductor device are filled with flowable particles smaller in size than the irregularities which are to be smoothed, and the particles are thereafter heated so that they flow and fill the irregularities, forming a smooth layer of flowable particle material which does not require polishing. The flowable particles may be mixed with non-flowable particles which are encapsulated in the layer of flowable particle material to form a homogeneous layer. The non-flowable particles may be augmentors which modify the properties of the layer. The particles may be dispersed with a spin-on process.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: November 17, 1998
    Assignee: HArris Corporation
    Inventors: Jack H. Linn, John J. Hackenberg, David A. DeCrosta
  • Patent number: 5830279
    Abstract: A device and method for removing contaminants from semiconductor wafers and from the interior of wafer processing chambers in which the temperature inside the chambers is raised to sufficiently high levels for short time periods. In a wafer etching chamber, heat cleaning is performed after wafer removal and lessens the required frequency of other cleaning methods and in doing so reduces the time the chamber is unavailable. In a mask removal chamber, heat cleaning is performed with the wafer in the chamber and while still under vacuum conditions, thereby driving contaminants off of both the wafer and the chamber interior. The wafer cleaning is performed prior to exposure to atmospheric water vapor which can initiate corrosion.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: November 3, 1998
    Assignee: Harris Corporation
    Inventor: John J. Hackenberg
  • Patent number: 5648678
    Abstract: An integrated circuit 10 has a programmable Zener diode with diffusion regions 18 and 16 and metal contacts 34 and 32. A barrier metal 30 is disposed between one contact 32 and the substrate 12; another contact region 18 has no barrier metal on its surface. A polysilicon layer 22 is self-aligned with surface regions 18 and diffusion region 18. A silicide layer 128 may be used on the polysilicon layer 22 and on surface region 18.
    Type: Grant
    Filed: September 21, 1994
    Date of Patent: July 15, 1997
    Assignee: Harris Corporation
    Inventors: Patrick A. Begley, John T. Gasner, Lawrence G. Pearce, Choong S. Rhee, Jeanne M. McNamara, John J. Hackenberg, Donald F. Hemmenway