Patents by Inventor John J. Kenny

John J. Kenny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10047583
    Abstract: Explosive cutter assemblies and methods include a liner having a single unitary body, and an explosive charge disposed within the liner. The explosive charge includes a continuous unitary body of explosive material having a first area disposed in association with an inner surface of the liner and a second area extending from the center of the assembly to the first area. A detonator can be used to ignite the second area of explosive material, causing propagation of a detonation to the first area, which in turn causes deformation of the liner and projection of the liner toward a target to form a cut. An adaptor sub having a detonator within can be inserted into the cutter assembly to secure the assembly together, position the detonator in association with the explosive material, and engage a conduit usable to raise and lower the cutter assembly and transmit a detonation signal.
    Type: Grant
    Filed: February 20, 2017
    Date of Patent: August 14, 2018
    Assignee: WRIGHT'S WELL CONTROL SERVICES, LLC
    Inventors: David C. Wright, John J. Kenny, David Siggers
  • Publication number: 20170159386
    Abstract: Explosive cutter assemblies and methods include a liner having a single unitary body, and an explosive charge disposed within the liner. The explosive charge includes a continuous unitary body of explosive material having a first area disposed in association with an inner surface of the liner and a second area extending from the center of the assembly to the first area. A detonator can be used to ignite the second area of explosive material, causing propagation of a detonation to the first area, which in turn causes deformation of the liner and projection of the liner toward a target to form a cut. An adaptor sub having a detonator within can be inserted into the cutter assembly to secure the assembly together, position the detonator in association with the explosive material, and engage a conduit usable to raise and lower the cutter assembly and transmit a detonation signal.
    Type: Application
    Filed: February 20, 2017
    Publication date: June 8, 2017
    Inventors: David C. Wright, John J. Kenny, David Siggers
  • Patent number: 9574416
    Abstract: Explosive cutter assemblies and methods include a liner having a single unitary body, and an explosive charge disposed within the liner. The explosive charge includes a continuous unitary body of explosive material having a first area disposed in association with an inner surface of the liner and a second area extending from the center of the assembly to the first area. A detonator can be used to ignite the second area of explosive material, causing propagation of a detonation to the first area, which in turn causes deformation of the liner and projection of the liner toward a target to form a cut. An adaptor sub having a detonator within can be inserted into the cutter assembly to secure the assembly together, position the detonator in association with the explosive material, and engage a conduit usable to raise and lower the cutter assembly and transmit a detonation signal.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: February 21, 2017
    Assignee: Wright's Well Control Services, LLC
    Inventors: David C. Wright, John J. Kenny, David Siggers
  • Publication number: 20160130902
    Abstract: Explosive cutter assemblies and methods include a liner having a single unitary body, and an explosive charge disposed within the liner. The explosive charge includes a continuous unitary body of explosive material having a first area disposed in association with an inner surface of the liner and a second area extending from the center of the assembly to the first area. A detonator can be used to ignite the second area of explosive material, causing propagation of a detonation to the first area, which in turn causes deformation of the liner and projection of the liner toward a target to form a cut. An adaptor sub having a detonator within can be inserted into the cutter assembly to secure the assembly together, position the detonator in association with the explosive material, and engage a conduit usable to raise and lower the cutter assembly and transmit a detonation signal.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 12, 2016
    Applicant: Wright's Well Control Services, LLC
    Inventors: David C. Wright, John J. Kenny, David Siggers
  • Patent number: 7953325
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: May 31, 2011
    Assignee: Enablence USA FTTX Networks, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20100046947
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: August 26, 2009
    Publication date: February 25, 2010
    Applicant: ENABLENCE USA FTTX NETWORKS INC.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7616901
    Abstract: Optical networks as defined by the IEEE 802.3ah standard suffer from Stimulated Raman Scattering (SRS) that causes data transmission at a first optical wavelength to interfere with broadcast video transmission at a second optical wavelength in single mode optical fibers. The problem is exacerbated when data is not being transmitted across the network; and instead, an idle pattern transmission is being transmitted in order to keep the network synchronized. The repetitive nature of the idle pattern transmission leads to the SRS optical interference effect. This optical interference effect is mitigated when countermeasures are implemented to modify the idle pattern transmissions or to transmit random data in place of the idle pattern transmissions.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: November 10, 2009
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, Alan M. Brown, John J. Kenny, Stephen Thomas
  • Patent number: 7606492
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 20, 2009
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe
  • Patent number: 7599622
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: October 6, 2009
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7593639
    Abstract: A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or internet telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture. The invention operates independently of a legacy upstream transmission timing scheme so that the legacy upstream transmission timing scheme can remain effective in preventing data collisions. In other embodiments, the present invention allows for less complex hardware for subscribers that are not taking data services. Further, an optical signal present line in combination with a driver may be employed in order to reduce the amount of hardware in a laser transceiver node.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: September 22, 2009
    Assignee: Enablence USA FTTX Networks Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Deven J. Anthony
  • Publication number: 20080187313
    Abstract: Optical networks as defined by the IEEE 802.3ah standard suffer from Stimulated Raman Scattering (SRS) that causes data transmission at a first optical wavelength to interfere with broadcast video transmission at a second optical wavelength in single mode optical fibers. The problem is exacerbated when data is not being transmitted across the network; and instead, an idle pattern transmission is being transmitted in order to keep the network synchronized. The repetitive nature of the idle pattern transmission leads to the SRS optical interference effect. This optical interference effect is mitigated when countermeasures are implemented to modify the idle pattern transmissions or to transmit random data in place of the idle pattern transmissions.
    Type: Application
    Filed: December 14, 2007
    Publication date: August 7, 2008
    Inventors: James O. Farmer, Alan M. Brown, John J. Kenny, Stephen Thomas
  • Patent number: 7389031
    Abstract: Forming a plurality of loops in an optical fiber around a spool adjacent to an exposed end face can suppress internal reflections from the exposed end face. The radius of the loops can attenuate light that is propagating to and from the end face by causing light to leak out of the optical fiber's core and into its cladding. The radius can be selected to control physical stress in the optical fiber and promote reliability. The radius and the number of loops can be selected to meet a return loss specification. The loops can be formed by coiling the optical fiber around a spool that includes a slot for holding the optical fiber until it is put into service.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: June 17, 2008
    Assignee: Wave7 Optics, Inc.
    Inventors: Ronald L. Hodge, John J. Kenny
  • Patent number: 7340180
    Abstract: Optical networks as defined by the IEEE 802.3ah standard suffer from Stimulated Raman Scattering (SRS) that causes data transmission at a first optical wavelength to interfere with broadcast video transmission at a second optical wavelength in single mode optical fibers. The problem is exacerbated when data is not being transmitted across the network; and instead, an idle pattern transmission is being transmitted in order to keep the network synchronized. The repetitive nature of the idle pattern transmission leads to the SRS optical interference effect. This optical interference effect is mitigated when countermeasures are implemented to modify the idle pattern transmissions or to transmit random data in place of the idle pattern transmissions.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: March 4, 2008
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, Alan M. Brown, John J. Kenny, Stephen Thomas
  • Patent number: 7333726
    Abstract: Analog video signals are communicated from multiple service providers to subscribers by using analog optical carriers. Unlike digital optical carriers that typically support data services or IP TV, analog optical carriers that can be demodulated or translated back into the analog radio-frequency (RF) signals do not require additional and costly hardware for reception by a RF receiving device such as a television (TV) set. With the present invention, a TV set does not need significant digital hardware such as a digital set top box to allow the TV set to view video signals from a desired service provider. The present invention can allow a plurality of competing service providers to offer video services to a subscriber through a single optical network.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: February 19, 2008
    Assignee: Wave7 Optics, Inc.
    Inventors: John J. Kenny, James O. Farmer
  • Patent number: 7269350
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: September 11, 2007
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7197244
    Abstract: Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: March 27, 2007
    Assignee: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Joe Caltagirone, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7184664
    Abstract: A return path system includes inserting RF packets between regular upstream data packets, where the data packets are generated by communication devices such as a computer or internet telephone. The RF packets can be derived from analog RF signals that are produced by legacy video service terminals. In this way, the present invention can provide an RF return path for legacy terminals that shares a return path for regular data packets in an optical network architecture. The invention operates independently of a legacy upstream transmission timing scheme so that the legacy upstream transmission timing scheme can remain effective in preventing data collisions. In other embodiments, the present invention allows for less complex hardware for subscribers that are not taking data services. Further, an optical signal present line in combination with a driver may be employed in order to reduce the amount of hardware in a laser transceiver node.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: February 27, 2007
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Deven J. Anthony
  • Patent number: 7130541
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: October 31, 2006
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe
  • Patent number: 7085281
    Abstract: A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: August 1, 2006
    Assignee: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Deven Anthony, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 7058260
    Abstract: Forming a plurality of loops in an optical fiber around a spool adjacent to an exposed end face can suppress internal reflections from the exposed end face. The radius of the loops can attenuate light that is propagating to and from the end face by causing light to leak out of the optical fiber's core and into its cladding. The radius can be selected to control physical stress in the optical fiber and promote reliability. The radius and the number of loops can be selected to meet a return loss specification. The loops can be formed by coiling the optical fiber around a spool that includes a slot for holding the optical fiber until it is put into service.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: June 6, 2006
    Assignee: Wave7 Optics, Inc.
    Inventors: Ronald L. Hodge, John J. Kenny