Patents by Inventor John J. LaScala

John J. LaScala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230278942
    Abstract: A polymerizable monomer prepared by reacting at least one epoxidized cardanol with (meth)acrylic anhydride or (meth)acryloyl chloride in the presence of one or more of triethylamine, tertiary amines, pyridines and pyridine derivatives; wherein the epoxidized cardanol is formed by epoxidation of an unsaturation site of a cardanol having the formula: wherein R is selected from hydrogen and an alkyl, or alkenyl group having 1-6 carbon atoms, and n is 7, 10, or 13, a polymer and resin made form the polymerizable monomer, and a method of preparing such a polymer. The resin created from this monomer is suitable for moderate temperature composites and coatings applications.
    Type: Application
    Filed: November 8, 2022
    Publication date: September 7, 2023
    Applicants: Drexel University, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Emre Kinaci, John J. LaScala
  • Patent number: 11643406
    Abstract: Benzoxazine compounds, methods of making them, polymers made therefrom and methods of polymerizing the benzoxazines. These renewable benzoxazine monomers and polymers that utilize the variety of building blocks found in renewable plant biomass, demonstrate excellent processability and large temperature windows for processing of resin systems.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: May 9, 2023
    Assignees: Drexel University, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Santosh K. Yadav, John J. LaScala
  • Patent number: 11629220
    Abstract: The present invention relates novel furan based amine cross-linkers with improved thermomechanical and water barrier properties. The novelty of this invention is the use of aromatic, and hydrophobic aliphatic aldehydes to bridge two furfuryl amines, which yields a diamine or tetra amines with a significantly enhanced hydrophobic character. These diamine cross-linkers exhibit enhanced water barrier properties and thermomechanical properties when cured with both commercial and synthetic epoxies.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 18, 2023
    Assignees: Drexel Unversity, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Santosh K. Yadav, John Vergara, John J. LaScala
  • Publication number: 20200361842
    Abstract: A polymerizable monomer prepared by partial or complete acrylation or methacrylation of at least one epoxidized cardanol, wherein the epoxidized cardanol is formed by epoxidation of an unsaturation site of a cardanol having the formula (I) wherein R is selected from hydrogen and an alkyl, or alkenyl group having 1-6 carbon atoms, and n is 7, 10, or 13, a polymer and resin made form the polymerizable monomer, and a method of preparing such a polymer. The resin created from this monomer is suitable for moderate temperture composites and coatings applications.
    Type: Application
    Filed: October 23, 2018
    Publication date: November 19, 2020
    Applicants: Drexel University, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Emre Kinaci, John J. LaScala
  • Publication number: 20200216429
    Abstract: Benzoxazine compounds, methods of making them, polymers made therefrom and methods of polymerizing the benzoxazines. These renewable benzoxazine monomers and polymers that utilize the variety of building blocks found in renewable plant biomass, demonstrate excellent processability and large temperature windows for processing of resin systems.
    Type: Application
    Filed: August 21, 2018
    Publication date: July 9, 2020
    Applicants: Drexel University, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Santosh K. Yadav, John J. LaScala
  • Publication number: 20200181329
    Abstract: A renewable polyimide or polyamic acid formed from a reaction comprising one or more furfurylamine compounds of Formula (I) or Formula (II) and one or more dianhydride or diacid compounds and heating to a temperature of up to 350° C., as well as methods of forming thereof, and polymers comprising the polyimide or polyamic acid compounds. The renewable furan based polyimides which demonstrate excellent processability, large temperature windows for processing of resin systems, and are less toxic.
    Type: Application
    Filed: August 21, 2018
    Publication date: June 11, 2020
    Applicants: Drexel University, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Santosh K. Yadav, John J. LaScala
  • Publication number: 20200172658
    Abstract: The present invention relates novel furan based amine cross-linkers with improved thermomechanical and water barrier properties. The novelty of this invention is the use of aromatic, and hydrophobic aliphatic aldehydes to bridge two furfuryl amines, which yields a diamine or tetra amines with a significantly enhanced hydrophobic character. These diamine cross-linkers exhibit enhanced water barrier properties and thermomechanical properties when cured with both commercial and synthetic epoxies.
    Type: Application
    Filed: August 21, 2018
    Publication date: June 4, 2020
    Applicants: DREXEL UNIVERSITY, The Government of the United States of America, as represented by The Secretary of the Army
    Inventors: Giuseppe R. Palmese, Santosh K. Yadav, John Vergara, John J. LaScala
  • Patent number: 9394427
    Abstract: Grafted triglycerides comprising an acrylated triglyceride grafted with a fatty acid residue containing 4 to 28 carbon atoms. Also described are methods for making a grafted triglyceride and for curing a material selected from vinyl esters and unsaturated polyesters and mixtures thereof and optionally a reactive diluent. The method includes the steps of mixing a grafted triglyceride of the present invention with a material selected from vinyl esters, unsaturated polyesters and mixtures thereof to form a mixture, and curing the mixture to form a cured resin system. A cured resin system comprising a cured product obtained by the foregoing method and composites containing the cured product and a filler or reinforcing material are also disclosed. This method also includes use of the grafted triglycerides to make toughened resin and composite systems with reduced hazardous air pollutants without significantly reducing the glass transition temperature and significantly increasing the viscosity.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: July 19, 2016
    Assignees: The United States of America as represented by the Secretary of the Army, Drexel University
    Inventors: Giuseppe R. Palmese, John J. LaScala, James M. Sands, Xing Geng
  • Publication number: 20150361247
    Abstract: Grafted triglycerides comprising an acrylated triglyceride grafted with a fatty acid residue containing 4 to 28 carbon atoms. Also described are methods for making a grafted triglyceride and for curing a material selected from vinyl esters and unsaturated polyesters and mixtures thereof and optionally a reactive diluent. The method includes the steps of mixing a grafted triglyceride of the present invention with a material selected from vinyl esters, unsaturated polyesters and mixtures thereof to form a mixture, and curing the mixture to form a cured resin system. A cured resin system comprising a cured product obtained by the foregoing method and composites containing the cured product and a filler or reinforcing material are also disclosed. This method also includes use of the grafted triglycerides to make toughened resin and composite systems with reduced hazardous air pollutants without significantly reducing the glass transition temperature and significantly increasing the viscosity.
    Type: Application
    Filed: July 2, 2015
    Publication date: December 17, 2015
    Applicants: DREXEL UNIVERSITY, Government of the United States as represented by the Secretary of the Army
    Inventors: Giuseppe R. Palmese, John J. LaScala, James M. Sands, Xing Geng
  • Patent number: 9102807
    Abstract: Grafted triglycerides comprising an acrylated triglyceride grafted with a fatty acid residue containing 4 to 28 carbon atoms. Also described are methods for making a grafted triglyceride and for curing a material selected from vinyl esters and unsaturated polyesters and mixtures thereof and optionally a reactive diluent. The method includes the steps of mixing a grafted triglyceride of the present invention with a material selected from vinyl esters, unsaturated polyesters and mixtures thereof to form a mixture, and curing the mixture to form a cured resin system. A cured resin system comprising a cured product obtained by the foregoing method and composites containing the cured product and a filler or reinforcing material are also disclosed. This method also includes use of the grafted triglycerides to make toughened resin and composite systems with reduced hazardous air pollutants without significantly reducing the glass transition temperature and significantly increasing the viscosity.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: August 11, 2015
    Assignees: The United States of America as Represented by the Secretary of the Army, Drexel University
    Inventors: Giuseppe R. Palmese, John J. LaScala, James M. Sands, Xing Geng
  • Publication number: 20140316055
    Abstract: Grafted triglycerides comprising an acrylated triglyceride grafted with a fatty acid residue containing 4 to 28 carbon atoms. Also described are methods for making a grafted triglyceride and for curing a material selected from vinyl esters and unsaturated polyesters and mixtures thereof and optionally a reactive diluent. The method includes the steps of mixing a grafted triglyceride of the present invention with a material selected from vinyl esters, unsaturated polyesters and mixtures thereof to form a mixture, and curing the mixture to form a cured resin system. A cured resin system comprising a cured product obtained by the foregoing method and composites containing the cured product and a filler or reinforcing material are also disclosed. This method also includes use of the grafted triglycerides to make toughened resin and composite systems with reduced hazardous air pollutants without significantly reducing the glass transition temperature and significantly increasing the viscosity.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventors: Giuseppe R. Palmese, John J. LaScala, James M. Sands, Xing Geng
  • Patent number: 8785547
    Abstract: Grafted triglycerides comprising an acrylated triglyceride grafted with a fatty acid residue containing 4 to 28 carbon atoms. Also described are methods for making a grafted triglyceride and for curing a material selected from vinyl esters and unsaturated polyesters and mixtures thereof and optionally a reactive diluent. The method includes the steps of mixing a grafted triglyceride of the present invention with a material selected from vinyl esters, unsaturated polyesters and mixtures thereof to form a mixture, and curing the mixture to form a cured resin system. A cured resin system comprising a cured product obtained by the foregoing method and composites containing the cured product and a filler or reinforcing material are also disclosed. This method also includes use of the grafted triglycerides to make toughened resin and composite systems with reduced hazardous air pollutants without significantly reducing the glass transition temperature and significantly increasing the viscosity.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: July 22, 2014
    Assignees: The United States of America as represented by the Secretary of the Army, Drexel University
    Inventors: Giuseppe R. Palmese, John J. LaScala, James M. Sands, Xing Geng
  • Publication number: 20130253127
    Abstract: Grafted triglycerides comprising an acrylated triglyceride grafted with a fatty acid residue containing 4 to 28 carbon atoms. Also described are methods for making a grafted triglyceride and for curing a material selected from vinyl esters and unsaturated polyesters and mixtures thereof and optionally a reactive diluent. The method includes the steps of mixing a grafted triglyceride of the present invention with a material selected from vinyl esters, unsaturated polyesters and mixtures thereof to form a mixture, and curing the mixture to form a cured resin system. A cured resin system comprising a cured product obtained by the foregoing method and composites containing the cured product and a filler or reinforcing material are also disclosed. This method also includes use of the grafted triglycerides to make toughened resin and composite systems with reduced hazardous air pollutants without significantly reducing the glass transition temperature and significantly increasing the viscosity.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 26, 2013
    Applicants: Government of the United States as represented by the Secretary of the Army, DREXEL UNIVERSITY
    Inventors: Giuseppe R. Palmese, John J. LaScala, James M. Sands, Xing Geng