Patents by Inventor John J. Maloney

John J. Maloney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220234943
    Abstract: Colored CTE modifiers may be added to a glass frit system to modify the CTE of a resulting fired enamel. The CTE modifier is colored. The colored CTE modifier may include a modified Pseudo-Brookite type material having a formula Al2TiO5, where Al and/or Ti are partially substituted with one or more coloring ions including Fe, Cr, Mn, Co, Ni, and Cu; a modified Cordierite type material having a formula Mg2Al4Si5O18, wherein Mg and/or Al is partially substituted with one or more of the coloring ions; a Perovskite type material having a formula Sm1?xSrxMnO3??, where x=0.0-0.5 and ?=0.0-0.25, or a modified version of the Perovskite type material wherein Sr is partially substituted with Ba and/or Ca; a modified magnesium pyrophosphate type material having a formula Mg2P2O7 wherein Mg is substituted with Co and/or Zn ions; or combinations thereof.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 28, 2022
    Inventors: Enos A. Axtell, III, John J. Maloney, Cody J. Gleason, Srinivasan Sridharan, George E. Sakoske
  • Publication number: 20220227662
    Abstract: A marking composition for forming marks or indicia on a substrate is provided for laser marking applications. The composition includes a glass frit, a carrier, and absorber particles. The glass frit includes alkali metal oxides, glass forming oxides, and one or more transition metal oxides. The glass frit is devoid of at least one of bismuth and zinc.
    Type: Application
    Filed: May 22, 2020
    Publication date: July 21, 2022
    Inventors: Enos A. Axtell, III, Joseph E. Sarver, John J. Maloney, Srinivasan Sridharan, George E. Sakoske
  • Publication number: 20220225501
    Abstract: Conductive thick film compositions compatible to aluminum nitride, alumina and silicon nitride substrates for microelectronic circuit application. The conductive thick film composition includes first copper powder, second copper powder, and glass component. The conductive thick film composition further includes CU2O, Ag, and at least one metal element selected from Ti, V, Zr, Mn, Cr, Co, and Sn. After firing, the conductive thick film composition exhibit improved sheet resistivity, and improved adhesion with underlying substrate.
    Type: Application
    Filed: September 6, 2019
    Publication date: July 14, 2022
    Inventors: Umesh Kumar, John J. Maloney, Bradford Smith, Ponnusamy Palanisamy, Srinivasan Sridharan, George E. Sakoske, Jr., George E. Graddy, Jr.
  • Patent number: 11225433
    Abstract: A sintered machinable glass-ceramic is provided. The machinable glass-ceramic is formed by mixing phyllosilicate material having a sheet structure, with a glass fit and firing the mixture at relatively low temperatures to sinter the phyllosilicate, while maintaining the sheet-like morphology of the phyllosilicate and its associated cleaving properties. The sintered machinable glass-ceramic can be machined with conventional metal working tools and includes the electrical properties of the phyllosilicate. Producing the sintered machinable glass-ceramic does not require the relatively high-temperature bulk nucleation and crystallization needed to form sheet phyllosilicate phases in situ.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: January 18, 2022
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, George E. Sakoske, John J. Maloney, Cody Gleason, Gregory R. Prinzbach, Bradford Smith, Chih Cheng Wang
  • Patent number: 11174170
    Abstract: Modified copper chromite spinel pigments exhibit lower coefficients of thermal expansion than unmodified structures. Three methods exist to modify the pigments: (1) the incorporation of secondary modifiers into the pigment core composition, (2) control of the pigment firing profile, including both the temperature and the soak time, and (3) control of the pigment core composition.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 16, 2021
    Assignee: Ferro Corporation
    Inventors: George E. Sakoske, John J. Maloney, Cody Gleason, Srinivasan Sridharan
  • Publication number: 20210198119
    Abstract: Modified copper chromite spinel pigments exhibit lower coefficients of thermal expansion than unmodified structures. Three methods exist to modify the pigments: (1) the incorporation of secondary modifiers into the pigment core composition, (2) control of the pigment firing profile, including both the temperature and the soak time, and (3) control of the pigment core composition.
    Type: Application
    Filed: January 23, 2017
    Publication date: July 1, 2021
    Inventors: George E. Sakoske, John J. Maloney, Cody Gleason, Srinivasan Sridharan
  • Patent number: 10577279
    Abstract: A method of modifying glass frit involves treating the frit with a grain-boundary-healing compound. The method increases transmission and clarity, and reduces haze of a fired enamel coating made from such modified glass frit as compared to a coating not made from such modified glass frit. The grain-boundary-healing compound influences the chemistry at the grain boundaries to prevent haze. The compound burns out to yield a fluxing material that dissolves alkaline carbonates or bicarbonates on the surface of the glass frit. The dissolved species are incorporated into the enamel coating, thereby promoting the fusion of the glass frit and reducing the amount of haze in the enamel coating. The additives also function to prevent the formation of seed crystals on the surface of the glass frit that may inhibit the fusion of the glass frit.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: March 3, 2020
    Assignee: Ferro Corporation
    Inventors: Enos A. Axtell, III, John J. Maloney, James D. Walker, Srinivasan Sridharan, George E. Sakoske
  • Patent number: 10562809
    Abstract: A low K value, high Q value, low firing dielectric material and method of forming a fired dielectric material. The dielectric material can be fired below 950° C. or below 1100° C., has a K value of less than about 8 at 10-30 GHz and a Q value of greater than 500 or greater than 1000 at 10-30 GHz. The dielectric material includes, before firing a solids portion including 10-95 wt % or 10-99 wt % silica powder and 5-90 wt % or 1-90 wt % glass component. The glass component includes 50-90 mole % SiO2, 5-35 mole % or 0.1-35 mole % B2O3, 0.1-10 mole % or 0.1-25 mole % Al2O3, 0.1-10 mole % K2O, 0.1-10 mole % Na2O, 0.1-20 mole % Li2O, 0.1-30 mole % F. The total amount of Li2O+Na2O+K2O is 0.1-30 mole % of the glass component. The silica powder can be amorphous or crystalline.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 18, 2020
    Assignee: Ferro Corporation
    Inventors: Cody J. Gleason, John J. Maloney, Srinivasan Sridharan, George E. Sakoske, Peter Marley, Mohammed H. Megherhi, Yie-Shein Her, Orville W. Brown, Jackie D. Davis, Thomas J. Coffey, Ellen S. Tormey, Stanley Wang, David L. Widlewski
  • Patent number: 10370290
    Abstract: A passivation glass coating composition is provided for forming a fired passivation glass layer on a semiconductor substrate having p-n junction. The passivation glass coating composition includes a glass component that is lead free, cadmium free, alkali metal oxides free, and colored transition metal oxides (i.e. metal oxides of V, Fe, Co, Ni, Cr, Cu, Mn) free. The glass component includes bismuth based glasses, and provides a firing temperature range of 500° C. to 900° C., and controlled devitrification. Once fired to a semiconductor device, the fired passivation glass layer provides exceptional device performance including no cracking of the fired passivation glass layer, excellent thermal expansion matching to silicon, good chemical resistance to acid and base, and improved device performance.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: August 6, 2019
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, John J. Maloney, George E. Sakoske, Gregory R. Prinzbach, David Widlewski, Jackie Davis, Bradford Smith
  • Publication number: 20190135683
    Abstract: A low K value, high Q value, low firing dielectric material and method of forming a fired dielectric material. The dielectric material can be fired below 950° C. or below 1100° C., has a K value of less than about 8 at 10-30 GHz and a Q value of greater than 500 or greater than 1000 at 10-30 GHz. The dielectric material includes, before firing a solids portion including 10-95 wt % or 10-99 wt % silica powder and 5-90 wt % or 1-90 wt % glass component. The glass component includes 50-90 mole % SiO2, 5-35 mole % or 0.1-35 mole % B2O3, 0.1-10 mole % or 0.1-25 mole % Al2O3, 0.1-10 mole % K2O, 0.1-10 mole % Na2O, 0.1-20 mole % Li2O, 0.1-30 mole % F. The total amount of Li2O+Na2O+K2O is 0.1-30 mole % of the glass component. The silica powder can be amorphous or crystalline.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 9, 2019
    Inventors: Cody J. Gleason, John J. Maloney, Srinivasan Sridharan, George E. Sakoske, Peter Marley, Mohammed H. Megherhi, Yie-Shein Her, Orville W. Brown, Jackie D. Davis, Thomas J. Coffey, Ellen S. Tormey, Stanley Wang, David L. Widlewski
  • Publication number: 20190055155
    Abstract: A passivation glass coating composition is provided for forming a fired passivation glass layer on a semiconductor substrate having p-n junction. The passivation glass coating composition includes a glass component that is lead free, cadmium free, alkali metal oxides free, and colored transition metal oxides (i.e. metal oxides of V, Fe, Co, Ni, Cr, Cu, Mn) free. The glass component includes bismuth based glasses, and provides a firing temperature range of 500° C. to 900° C., and controlled devitrification. Once fired to a semiconductor device, the fired passivation glass layer provides exceptional device performance including no cracking of the fired passivation glass layer, excellent thermal expansion matching to silicon, good chemical resistance to acid and base, and improved device performance.
    Type: Application
    Filed: May 3, 2017
    Publication date: February 21, 2019
    Inventors: Srinivasan Sridharan, John J. Maloney, George E. Sakoske, Gregory R. Prinzbach, David Widlewski, Jackie Davis, Bradford Smith
  • Publication number: 20180186687
    Abstract: A sintered machinable glass-ceramic is provided. The machinable glass-ceramic is formed by mixing phyllosilicate material having a sheet structure, with a glass fit and firing the mixture at relatively low temperatures to sinter the phyllosilicate, while maintaining the sheet-like morphology of the phyllosilicate and its associated cleaving properties. The sintered machinable glass-ceramic can be machined with conventional metal working tools and includes the electrical properties of the phyllosilicate. Producing the sintered machinable glass-ceramic does not require the relatively high-temperature bulk nucleation and crystallization needed to form sheet phyllosilicate phases in situ.
    Type: Application
    Filed: December 2, 2016
    Publication date: July 5, 2018
    Inventors: Srinivasan Sridharan, George E. Sakoske, John J. Maloney, Cody Gleason, Gregory R. Prinzbach, Bradford Smith, Chih Cheng Wang
  • Patent number: 9969648
    Abstract: A method of sealing at least two inorganic substrates together using an induction energy source comprising applying to at least one of the substrates a paste composition including a glass frit, and an induction coupling additive, bringing at least a second substrate into contact with the paste composition, and subjecting the substrates and paste to induction heating, thereby forming a hermetic seal between the two inorganic substrates.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: May 15, 2018
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, George E. Sakoske, Chandrashekhar S. Khadilkar, Gregory R. Prinzbach, John J. Maloney
  • Patent number: 9892853
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 13, 2018
    Assignee: Ferro Corporation
    Inventors: Walter J. Symes, Jr., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, Jr., George E. Sakoske
  • Patent number: 9871176
    Abstract: The glass composites include glass frit, that when sintered produce a phosphor-containing layer, suitable for use in optical applications. The glass composites can include a crystallizing glass frit, such that phosphor crystals precipitate from the frit composite during sintering, or can include a non-crystallizing glass composition, such that phosphor is added to the frit composite before sintering. The sintering temperatures of the glass are relatively low so that fluorescence of the phosphors will not substantially degrade during sintering. The resulting phosphor-containing layer can be used in various optical applications including those for converting blue light into various color temperatures of white light.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: January 16, 2018
    Assignee: Ferro Corporation
    Inventors: John J. Maloney, Srinivasan Sridharan, Jackie D. Davis, Gregory R. Prinzbach, George E. Sakoske
  • Publication number: 20180009700
    Abstract: A method of modifying glass frit involves treating the frit with a grain-boundary-healing compound. The method increases transmission and clarity, and reduces haze of a fired enamel coating made from such modified glass frit as compared to a coating not made from such modified glass frit. The grain-boundary-healing compound influences the chemistry at the grain boundaries to prevent haze. The compound burns out to yield a fluxing material that dissolves alkaline carbonates or bicarbonates on the surface of the glass frit. The dissolved species are incorporated into the enamel coating, thereby promoting the fusion of the glass frit and reducing the amount of haze in the enamel coating. The additives also function to prevent the formation of seed crystals on the surface of the glass frit that may inhibit the fusion of the glass frit.
    Type: Application
    Filed: January 4, 2016
    Publication date: January 11, 2018
    Applicant: Ferro Corporation
    Inventors: Enos A. Axtell, III, John J. Maloney, James D. Walker, Srinivasan Sridharan, George E. Sakoske
  • Publication number: 20170110246
    Abstract: LTCC devices are produced from dielectric compositions comprising a mixture of precursor materials that, upon firing, forms a dielectric material comprising a matrix of titanates of alkaline earth metals, the matrix doped with at least one selected from rare-earth element, aluminum oxide, silicon oxide and bismuth oxide.
    Type: Application
    Filed: June 12, 2015
    Publication date: April 20, 2017
    Inventors: Walter J. Symes, JR., Gregory R. Prinzbach, John J. Maloney, James E. Henry, Orville W. Brown, Srinivasan Sridharan, Yie-Shein Her, Stanley Wang, George E. Graddy, JR., George E. Sakoske
  • Patent number: 9545682
    Abstract: Solder can be used to wet and bind glass substrates together to ensure a hermetic seal that superior (less penetrable) than conventional polymeric (thermoplastic or thermoplastic elastomer) seals in electric and electronic applications.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: January 17, 2017
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, Robert P. Blonski, Chandrashekhar S. Khadilkar, John J. Maloney
  • Patent number: 9540274
    Abstract: Glasses comprising Bi203, ZnO B203 and optionally a colorant including an oxide of a metal such as iron, cobalt, manganese, nickel, copper and chromium are suitable to form hermetic seals in solar cell modules, architectural glass windows and MEMS devices. Glass frit and paste compositions suitable for flow and bonding to various substrates—glass, metal, silicon, in the temperature range of 400-500 degrees Centigrade. The broad compositional range in mole % is 25-70% Bi203, up to 65% ZnO, and 1-70% B203. Such glasses do not have batched in alumina or silica. Such glasses lack alumina and silica.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: January 10, 2017
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, John J. Maloney, Chandrashekhar Khadilkar, Robert P. Blonski, David L. Widlewski
  • Patent number: 9499428
    Abstract: Broadband infrared radiation is used to heat and fuse an enamel paste to form an enamel seal between at least two solid substrates such as glass, ceramic or metal.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: November 22, 2016
    Assignee: Ferro Corporation
    Inventors: John J. Maloney, Andrew M. Rohn, Jr., Chandrashekhar S. Khadilkar, Srinivasan Sridharan, Robert P. Blonski, George E. Sakoske