Patents by Inventor John J. Marra

John J. Marra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230107877
    Abstract: A gas turbine engine includes a rotor rotatable about a central axis. The gas turbine engine includes a turbine stage including a stationary portion and a rotating portion made up of a number of rotating blades and a plurality of stationary vanes arranged to define the stationary portion. Each stationary vane includes an inner rail having an inlet face, a suction side face, a pressure side face, and a platform. A vane portion extends along a radial line from the platform and defines one of a first stagger angle and a second stagger angle with respect to the central axis. The platform has an elliptical cross-section in a plane that includes the central axis.
    Type: Application
    Filed: February 26, 2020
    Publication date: April 6, 2023
    Inventors: John J. Marra, John Pokorny
  • Patent number: 10830065
    Abstract: An attachment system (10) for a turbine airfoil (12) including one or more roots (14) to attach the turbine airfoil (12) to a rotor, whereby the roots (14) have one or more curved teeth (18) that substantially limit, if not completely eliminate, circumferential rocking motion of the turbine airfoil (12) relative to a disc (20) supporting the turbine airfoil (12) during turning gear operation. The curved configuration of the teeth (18) extending laterally from the root (14) prevent rotation of the turbine airfoil (12) relative to the disc (20) supporting the turbine airfoil (12), thereby preventing premature failure of the turbine airfoil (12) or disc (20) due to wear from turbine airfoil (12) rocking during turning gear operation. In at least one embodiment, a laterally extending outer edge (22) of an axially extending tooth (18) may be curved about an axis (30) orthogonal to a centerline (26) of a turbine engine (28) in which the turbine airfoil (12) is positioned.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: November 10, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: John J. Marra
  • Publication number: 20180094529
    Abstract: An attachment system (10) for a turbine airfoil (12) including one or more roots (14) to attach the turbine airfoil (12) to a rotor, whereby the roots (14) have one or more curved teeth (18) that substantially limit, if not completely eliminate, circumferential rocking motion of the turbine airfoil (12) relative to a disc (20) supporting the turbine airfoil (12) during turning gear operation. The curved configuration of the teeth (18) extending laterally from the root (14) prevent rotation of the turbine airfoil (12) relative to the disc (20) supporting the turbine airfoil (12), thereby preventing premature failure of the turbine airfoil (12) or disc (20) due to wear from turbine airfoil (12) rocking during turning gear operation. In at least one embodiment, a laterally extending outer edge (22) of an axially extending tooth (18) may be curved about an axis (30) orthogonal to a centerline (26) of a turbine engine (28) in which the turbine airfoil (12) is positioned.
    Type: Application
    Filed: June 2, 2015
    Publication date: April 5, 2018
    Inventor: John J. Marra
  • Publication number: 20180066523
    Abstract: An airfoil cooling system (54) for a gas turbine engine (10) is disclosed. The airfoil cooling system (54) may be formed from at least a first cooling fluid supply system (56), and a second cooling fluid supply system (58). The first cooling fluid supply system (56) may be configured to supply cooling fluids at a first pressure to one or more airfoils of a first row (68) of airfoils, and the second cooling fluid supply system (58) may be configured to supply cooling fluids at a second pressure to the one or more airfoils of the first row (68) of airfoils. Additionally, the second pressure may be lower than the first pressure. As such, each of the one or more airfoils may be cooled by cooling fluids at two different pressures. In particular embodiments, this may allow the airfoils to be cooled, while lowering the cost to the turbine engine (10) for providing such cooling.
    Type: Application
    Filed: April 6, 2015
    Publication date: March 8, 2018
    Inventors: Jan H. Marsh, John J. Marra, Carmen Andrew Scribner
  • Patent number: 9822662
    Abstract: A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: November 21, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Jan H. Marsh, John J. Marra
  • Patent number: 9726028
    Abstract: A vane assembly (10) having: an airfoil (12) and a shroud (14) held together without metallurgical bonding there between; a channel (22) disposed circumferentially about the airfoil (12), between the airfoil (12) and the shroud (14); and a seal (20) disposed in the channel (22), wherein during operation of a turbine engine having the vane assembly (10) the seal (20) has a sufficient ductility such that a force generated on the seal (20) resulting from relative movement of the airfoil (12) and the shroud (14) is sufficient to plastically deform the seal (20).
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: August 8, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: John J. Marra, Brian J. Wessell, Allister W. James, Jan H. Marsh, Paul J. Gear
  • Patent number: 9551227
    Abstract: A cooling channel (36, 36B) cools an exterior surface (40 or 42) or two opposed exterior surfaces (40 and 42). The channel has a near-wall inner surface (48, 50) with a width (W1). Interior side surfaces (52, 54) may converge to a reduced channel width (W2). The near-wall inner surface (48, 50) may have fins (44) aligned with a coolant flow (22). The fins may highest at mid-width of the near-wall inner surface. A two-sided cooling channel (36) may have two near-wall inner surfaces (48, 50) parallel to two respective exterior surfaces (40, 42), and may have an hourglass shaped transverse sectional profile. The tapered channel width (W1, W2) and the fin height profile (56A, 56B) increases cooling flow (22) into the corners (C) of the channel for more uniform and efficient cooling.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: January 24, 2017
    Assignees: Mikro Systems, Inc., Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, John J. Marra, Gary B. Merrill, Benjamin E. Heneveld, Jill Klinger
  • Patent number: 9404377
    Abstract: Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: August 2, 2016
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Christian Xavier Campbell, Darryl Eng, John J. Marra
  • Patent number: 9388704
    Abstract: A vane array adapted to be coupled to a vane carrier within a gas turbine engine is provided comprising: a plurality of elongated airfoils comprising at least a first airfoil and a second airfoil located adjacent to one another; a U-ring; first connector structure for coupling a radially inner end section of each of the first and second airfoils to the U-ring; second connector structure for coupling a radially outer end section of each of the first and second airfoils to the vane carrier; a platform extending between the first and second airfoils; and platform connector structure for coupling the platform to one of the U-ring and the vane carrier.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: July 12, 2016
    Assignee: Siemens Energy, Inc.
    Inventors: Andrew S. Lohaus, Christian Xavier Campbell, Samuel R. Miller, Jr., John J. Marra
  • Patent number: 9366143
    Abstract: A cooling arrangement in a gas turbine system (120). The arrangement includes a plurality of flow network units (208) to transfer heat to cooling fluid, at least one unit including first (218), second (220), and third (222) flow sections between openings (64a) in a first wall (66) and an opening in a second wall (68) to pass cooling fluid through the walls. The first section includes first flow paths, between the openings in the first wall and the second section, extending to the second section. The third section includes third flow paths, between the second section and the opening in the second wall, to effect flow of cooling fluid. The second section includes one or more cooling fluid flow paths between the first section and the third section. The number of flow paths in the second section is fewer than the number of first flow paths and fewer than the number of third flow paths.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: June 14, 2016
    Assignees: Mikro Systems, Inc., Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Humberto A. Zuniga, Jay A. Morrison, Brede J. Kolsrud, John J. Marra
  • Patent number: 9359902
    Abstract: A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: June 7, 2016
    Assignee: Siemens Energy, Inc.
    Inventors: Christian X. Campbell, Jr., John J. Marra, Jan H. Marsh
  • Publication number: 20150132122
    Abstract: A vane array adapted to be coupled to a vane carrier within a gas turbine engine is provided comprising: a plurality of elongated airfoils comprising at least a first airfoil and a second airfoil located adjacent to one another; a U-ring; first connector structure for coupling a radially inner end section of each of the first and second airfoils to the U-ring; second connector structure for coupling a radially outer end section of each of the first and second airfoils to the vane carrier; a platform extending between the first and second airfoils; and platform connector structure for coupling the platform to one of the U-ring and the vane carrier.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Inventors: Andrew S. Lohaus, Christian Xavier Campbell, Samuel R. Miller, JR., John J. Marra
  • Publication number: 20150132117
    Abstract: A ducting arrangement (10), including: a plurality of discrete ducts (18), each defining a flow path and configured to receive a flow of combustion gases from a respective combustor can, where the plurality of discrete ducts merge to form a common duct structure; and a throat insert (50) configured to define at least part of a junction of one of the discrete ducts and the common duct structure.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Inventors: John J. Marra, Jay A. Morrison, Ernie B. Campbell
  • Publication number: 20150132101
    Abstract: A cooling system for a turbine engine for directing cooling fluids from a compressor to a turbine blade cooling fluid supply and from an ambient air source to the turbine blade cooling fluid supply to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The cooling system may include a compressor bleed conduit extending from a compressor to the turbine blade cooling fluid supply that provides cooling fluid to at least one turbine blade. The compressor bleed conduit may include an upstream section and a downstream section whereby the upstream section exhausts compressed bleed air through an outlet into the downstream section through which ambient air passes. The outlet of the upstream section may be generally aligned with a flow of ambient air flowing in the downstream section. As such, the compressed air increases the flow of ambient air to the turbine blade cooling fluid supply.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Inventors: Jan H. Marsh, John J. Marra
  • Patent number: 9022736
    Abstract: A continuous serpentine cooling circuit forming a progression of radial passages (44, 45, 46, 47A, 48A) between pressure and suction side walls (52, 54) in a MID region of a turbine airfoil (24). The circuit progresses first axially, then tangentially, ending in a last radial passage (48A) adjacent to the suction side (54) and not adjacent to the pressure side (52). The passages of the axial progression (44, 45, 46) may be adjacent to both the pressure and suction side walls of the airfoil. The next to last radial passage (47A) may be adjacent to the pressure side wall and not adjacent to the suction side wall. The last two radial passages (47A, 48A) may be longer along the pressure and suction side walls respectively than they are in a width direction, providing increased direct cooling surface area on the interiors of these hot walls.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 5, 2015
    Assignees: Siemens Energy, Inc., Mikro Systems, Inc.
    Inventors: Ching-Pang Lee, Nan Jiang, John J. Marra, Ronald J. Rudolph, John P. Dalton
  • Patent number: 9017014
    Abstract: An outer rim seal arrangement (10), including: an annular rim (70) centered about a longitudinal axis (30) of a rotor disc (31), extending fore and having a fore-end (72), an outward-facing surface (74), and an inward-facing surface (76); a lower angel wing (62) extending aft from a base of a turbine blade (22) and having an aft end (64) disposed radially inward of the rim inward-facing surface to define a lower angel wing seal gap (80); an upper angel wing (66) extending aft from the turbine blade base and having an aft end (68) disposed radially outward of the rim outward-facing surface to define a upper angel wing seal gap (80, 82); and guide vanes (100) disposed on the rim inward-facing surface in the lower angel wing seal gap. Pumping fins (102) may be disposed on the upper angel wing seal aft end in the upper angel wing seal gap.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 28, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Kok-Mun Tham, Eric Schroeder, Jamie Meeroff, Samuel R. Miller, Jr., John J. Marra, Christian X. Campbell
  • Patent number: 9011077
    Abstract: An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 21, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Paul H. Vitt, David A. Kemp, Ching-Pang Lee, John J. Marra
  • Publication number: 20150093251
    Abstract: A cooling arrangement in a gas turbine system (120). The arrangement includes a plurality of flow network units (208) to transfer heat to cooling fluid, at least one unit including first (218), second (220), and third (222) flow sections between openings (64a) in a first wall (66) and an opening in a second wall (68) to pass cooling fluid through the walls. The first section includes first flow paths, between the openings in the first wall and the second section, extending to the second section. The third section includes third flow paths, between the second section and the opening in the second wall, to effect flow of cooling fluid. The second section includes one or more cooling fluid flow paths between the first section and the third section. The number of flow paths in the second section is fewer than the number of first flow paths and fewer than the number of third flow paths.
    Type: Application
    Filed: November 24, 2014
    Publication date: April 2, 2015
    Inventors: Ching-Pang Lee, Humberto A. Zuniga, Jay A. Morrison, Brede J. Kolsrud, John J. Marra
  • Publication number: 20150078898
    Abstract: Multi-scale turbulation features, including first turbulators (46, 48) on a cooling surface (44), and smaller turbulators (52, 54, 58, 62) on the first turbulators. The first turbulators may be formed between larger turbulators (50). The first turbulators may be alternating ridges (46) and valleys (48). The smaller turbulators may be concave surface features such as dimples (62) and grooves (54), and/or convex surface features such as bumps (58) and smaller ridges (52). An embodiment with convex turbulators (52, 58) in the valleys (48) and concave turbulators (54, 62) on the ridges (46) increases the cooling surface area, reduces boundary layer separation, avoids coolant shadowing and stagnation, and reduces component mass.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 19, 2015
    Inventors: Ching-Pang Lee, Nan Jiang, John J. Marra, Ronald J. Rudolf
  • Patent number: RE45690
    Abstract: A damping structure for a turbomachine rotor. The damping structure including an elongated snubber element including a first snubber end rigidly attached to a first blade and extending toward an adjacent second blade, and an opposite second snubber end positioned adjacent to a cooperating surface associated with the second blade. The snubber element has a centerline extending radially inwardly in a direction from the first blade toward the second blade along at least a portion of the snubber element between the first and second snubber ends. Rotational movement of the rotor effects relative movement between the second snubber end and the cooperating surface to position the second snubber end in frictional engagement with the cooperating surface with a predetermined damping force determined by a centrifugal force on the snubber element.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: September 29, 2015
    Assignee: SIEMENS ENERGY, INC.
    Inventor: John J. Marra