Patents by Inventor John J. Monson

John J. Monson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11591529
    Abstract: In some examples, hydrocarbon feed and a diluent such as steam are mixed, and heated. A vapor phase product and a liquid phase product can be separated from the heated mixture. The liquid phase product can be hydroprocessed to produce a first hydroprocessed product. A pitch and one or more hydrocarbon products can be separated from the first hydroprocessed product. The pitch can be contacted with a diluent to produce a pitch-diluent mixture. The pitch-diluent mixture can be hydroprocessed to produce a second hydroprocessed product. A hydroprocessor heavy product and a utility fluid product can be separated from the second hydroprocessed product. The diluent can be or include at least a portion of the utility fluid product. The vapor phase product can be steam cracked to produce a steam cracker effluent. A tar product and a process gas that can include ethylene and propylene can be separated from the steam cracker effluent.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: February 28, 2023
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Patent number: 11473024
    Abstract: Systems and methods are provided for increasing the portion of a pyrolysis tar fraction that can be hydroprocessed by using a physical particle size reduction process on at least a portion of the pyrolysis tar fraction. The physical particle size reduction process can reduce the percentage of particles in the pyrolysis tar fraction that have a particle size of 75 ?m or greater, or 50 ?m or greater. It has been unexpectedly discovered that at least a portion of the particles having a size of 75 ?m or less, or 50 ?m or less, can be effectively hydroprocessed to form products of greater value while still reducing or minimizing the amount of fouling or plugging in a hydroprocessing catalyst bed. By increasing the number of particles having a size of 75 ?m or less, or 50 ?m or less, while selectively removing larger particles from the SCT fraction, a higher yield of hydrocarbon products can be achieved for a feed containing an SCT fraction.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: October 18, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Coleman, Kendele S. Galvan, John J. Monson, Denise M. Burcham, Kapil Kandel
  • Publication number: 20220204866
    Abstract: Processes and apparatus for preparing a liquid hydrocarbon product are provided. In one embodiment, a process for prepreparing a liquid hydrocarbon product includes thermally-treating a tar to produce a first tar composition and blending the tar composition with a utility fluid to form a tar-fluid mixture. The process includes separating the tar-fluid mixture to form a first lower-density portion and a first higher-density portion containing solids. The process further includes thermally-treating the first higher-density portion to form a thermally-treated first higher-density portion to convert at least a portion of the solids to liquid.
    Type: Application
    Filed: May 15, 2020
    Publication date: June 30, 2022
    Inventors: John J. Monson, Kendele S. Galvan, Kapil Kandel
  • Patent number: 11352576
    Abstract: In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that can include steam and a hydrocarbon. The liquid phase product can be catalytically cracked in the presence of a fluidized catalyst to produce a catalytically cracked effluent. A bottoms product can be separated from the catalytically cracked effluent. The bottoms product can be hydroprocessed to produce a hydroprocessed product. For example, the bottoms product can be hydroprocessed under pre-treater hydroprocessing conditions to produce a pre-treated bottoms product and the pre-treated bottoms product can be hydroprocessed under bottoms product hydroprocessing conditions to produce the hydroprocessed product. A hydroprocessor heavy product can be separated from the hydroprocessed product. The vapor phase product can be steam cracked to produce a steam cracker effluent. A tar product and an upgraded steam cracker effluent can be separated from the steam cracker effluent.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: June 7, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Patent number: 11286435
    Abstract: In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that includes steam and a hydrocarbon. The vapor phase product can be steam cracked to produce a steam cracker effluent. The steam cracker effluent can be contacted with a quench fluid to produce a cooled steam cracker effluent. The steam cracker effluent can be at a temperature of >300° C. when initially contacted with the quench fluid. A tar product and a process gas that can include ethylene and propylene can be separated from the cooled steam cracker effluent. The tar product can be hydroprocessed to produce a first hydroprocessed product. A hydroprocessor heavy product and a utility fluid product can be separated from the first hydroprocessed product. The quench fluid can be or include at least a portion of the utility fluid product.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: March 29, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Publication number: 20210388275
    Abstract: In some examples, hydrocarbon feed and a diluent such as steam are mixed, and heated. A vapor phase product and a liquid phase product can be separated from the heated mixture. The liquid phase product can be hydroprocessed to produce a first hydroprocessed product. A pitch and one or more hydrocarbon products can be separated from the first hydroprocessed product. The pitch can be contacted with a diluent to produce a pitch-diluent mixture. The pitch-diluent mixture can be hydroprocessed to produce a second hydroprocessed product. A hydroprocessor heavy product and a utility fluid product can be separated from the second hydroprocessed product. The diluent can be or include at least a portion of the utility fluid product. The vapor phase product can be steam cracked to produce a steam cracker effluent. A tar product and a process gas that can include ethylene and propylene can be separated from the steam cracker effluent.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 16, 2021
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Publication number: 20210380892
    Abstract: In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that can include steam and a hydrocarbon. The liquid phase product can be catalytically cracked in the presence of a fluidized catalyst to produce a catalytically cracked effluent. A bottoms product can be separated from the catalytically cracked effluent. The bottoms product can be hydroprocessed to produce a hydroprocessed product. For example, the bottoms product can be hydroprocessed under pre-treater hydroprocessing conditions to produce a pre-treated bottoms product and the pre-treated bottoms product can be hydroprocessed under bottoms product hydroprocessing conditions to produce the hydroprocessed product. A hydroprocessor heavy product can be separated from the hydroprocessed product. The vapor phase product can be steam cracked to produce a steam cracker effluent. A tar product and an upgraded steam cracker effluent can be separated from the steam cracker effluent.
    Type: Application
    Filed: November 4, 2019
    Publication date: December 9, 2021
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Publication number: 20210340450
    Abstract: In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that includes steam and a hydrocarbon. The vapor phase product can be steam cracked to produce a steam cracker effluent. The steam cracker effluent can be contacted with a quench fluid to produce a cooled steam cracker effluent. The steam cracker effluent can be at a temperature of >300° C. when initially contacted with the quench fluid. A tar product and a process gas that can include ethylene and propylene can be separated from the cooled steam cracker effluent. The tar product can be hydroprocessed to produce a first hydroprocessed product. A hydroprocessor heavy product and a utility fluid product can be separated from the first hydroprocessed product. The quench fluid can be or include at least a portion of the utility fluid product.
    Type: Application
    Filed: November 4, 2019
    Publication date: November 4, 2021
    Inventors: John R. DeLaney, John J. Monson, Teng Xu, Kendele S. Galvan
  • Publication number: 20210179954
    Abstract: Systems and methods are provided for increasing the portion of a pyrolysis tar fraction that can be hydroprocessed by using a physical particle size reduction process on at least a portion of the pyrolysis tar fraction. The physical particle size reduction process can reduce the percentage of particles in the pyrolysis tar fraction that have a particle size of 75 ?m or greater, or 50 ?m or greater. It has been unexpectedly discovered that at least a portion of the particles having a size of 75 ?m or less, or 50 ?m or less, can be effectively hydroprocessed to form products of greater value while still reducing or minimizing the amount of fouling or plugging in a hydroprocessing catalyst bed. By increasing the number of particles having a size of 75 ?m or less, or 50 ?m or less, while selectively removing larger particles from the SCT fraction, a higher yield of hydrocarbon products can be achieved for a feed containing an SCT fraction.
    Type: Application
    Filed: March 20, 2019
    Publication date: June 17, 2021
    Inventors: John S. Coleman, Kendele S. Galvan, John J. Monson, Denise M. Burcham, Kapil Kandel
  • Patent number: 9890336
    Abstract: A method for removing sulfolane from hydrocarbon streams by serial separation using raffinate wash column and at least one raffinate wash drum. The separation may be particularly useful in retrofitting existing separation facilities to produce motor fuels meeting the specifications requiring lower sulfolane content. A method is provided for the purification of a hydrocarbon-containing stream having a sulfolane therein. The method includes separating a first sulfolane-depleted stream from a hydrocarbon stream in a first counter-current separation unit and then separating a second sulfolane-depleted stream from the first sulfolane-depleted stream in a second counter-current separation unit. The first and second counter-current separation units are preferably different and chosen from a raffinate wash column or at least one raffinate wash drum. An apparatus for performing the methods is also described.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: February 13, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John J. Monson, Thomas J. Waddick, John R. Porter, Albert F. Seibert
  • Publication number: 20160075954
    Abstract: A method for removing sulfolane from hydrocarbon streams by serial separation using raffinate wash column and at least one raffinate wash drum. The separation may be particularly useful in retrofitting existing separation facilities to produce motor fuels meeting the specifications requiring lower sulfolane content. A method is provided for the purification of a hydrocarbon-containing stream having a sulfolane therein. The method includes separating a first sulfolane-depleted stream from a hydrocarbon stream in a first counter-current separation unit and then separating a second sulfolane-depleted stream from the first sulfolane-depleted stream in a second counter-current separation unit. The first and second counter-current separation units are preferably different and chosen from a raffinate wash column or at least one raffinate wash drum. An apparatus for performing the methods is also described.
    Type: Application
    Filed: July 30, 2015
    Publication date: March 17, 2016
    Inventors: John J. Monson, Thomas J. Waddick, John R. Porter, Albert F. Seibert
  • Publication number: 20150329441
    Abstract: An HF alkylation process for producing gasoline boiling range alkylate product by the alkylation in an HF alkylation unit of a light olefin reactant with an isoparaffin reactant in the presence of a hydrogen fluoride/sulfolane alkylation catalyst mixture in which fresh sulfolane feed having a Total Acid Number (TAN, ASTM D974) not more than 2 mq./L and optimally not more than 1 meq./L. is added to the hydrogen fluoride/sulfolane alkylation catalyst circulating in the unit. Control over the acidic components of the sulfolane feed is appropriately maintained by monitoring and pretreatment with an ion exchange resin to remove acidic components from the feed.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jeffrey M. Fitt, Stacey E. Johnson, Clay R. Sutton, John J. Monson
  • Patent number: 9026252
    Abstract: The invention concerns an improvement in the monitoring and control systems used in a liquid-liquid extraction unit or an extractive distillation unit for the separation of aromatic hydrocarbons from non-aromatic hydrocarbons.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: May 5, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Robert Alan Schaefer, John J. Monson
  • Patent number: 8981171
    Abstract: The proposed process uses crystallization technology to purify paraxylene simultaneously of large concentrations of C8 aromatics and also small concentrations of oxygenated species.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: March 17, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mark P. Hagemeister, David L. Johnson, John J. Monson
  • Publication number: 20150051066
    Abstract: An apparatus and process for passivating catalysts wherein an inert gas is used to administer a precise, measurable amount of passivating agent to a catalyst in a substantially safer manner than conventional means. The inventive apparatus at least includes a first container comprising at least one inert gas, a second container comprising at least one passivating agent, and a reactor comprising at least one catalyst, the first container, second container, and reactor being fluidly connected by a plurality of conduits. The inventive process at least includes pressurizing a first container with an inert gas, filling a second container with passivating agent, providing a reactor containing a passivatable catalyst, mixing the inert with the passivating agent, forming a mixture of passivating agent and inert gas, and introducing the mixture of passivating agent and inert gas into the reactor.
    Type: Application
    Filed: July 18, 2014
    Publication date: February 19, 2015
    Inventors: Robert G. Tinger, John J. Monson
  • Publication number: 20130237737
    Abstract: The proposed process uses crystallization technology to purify paraxylene simultaneously of large concentrations of C8 aromatics and also small concentrations of oxygenated species.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 12, 2013
    Inventors: Mark P. Hagemeister, David L. Johnson, John J. Monson
  • Publication number: 20130173061
    Abstract: The invention concerns an improvement in the monitoring and control systems used in a liquid-liquid extraction unit or an extractive distillation unit for the separation of aromatic hydrocarbons from non-aromatic hydrocarbons.
    Type: Application
    Filed: November 21, 2012
    Publication date: July 4, 2013
    Applicant: ExxonMobile Chemical Patents Inc.
    Inventors: Robert Alan Schaefer, John J. Monson
  • Patent number: 8201696
    Abstract: Apparatus and methods for liquid-liquid extraction. The apparatus can include a housing having a first section, second section, and third section. One or more sieve trays can be disposed in the first section, and one or more gratings can be disposed in the second section. A hydrocarbon feed inlet can be disposed adjacent the second section, wherein each grating has a plurality of openings formed therethrough. The openings having at least three sides. The first section can be disposed at a first end of the second section, and the third section can disposed at a second end of the second section.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: June 19, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: John J. Monson
  • Publication number: 20100096321
    Abstract: Apparatus and methods for liquid-liquid extraction. The apparatus can include a housing having a first section, second section, and third section. One or more sieve trays can be disposed in the first section, and one or more gratings can be disposed in the second section. A hydrocarbon feed inlet can be disposed adjacent the second section, wherein each grating has a plurality of openings formed therethrough. The openings having at least three sides. The first section can be disposed at a first end of the second section, and the third section can disposed at a second end of the second section.
    Type: Application
    Filed: September 10, 2009
    Publication date: April 22, 2010
    Inventor: John J. Monson