Patents by Inventor John J. O'Brien

John J. O'Brien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180124351
    Abstract: In some embodiments, apparatuses and methods are provided herein useful for providing an online shopping experience that conserves computing resources. In some embodiments, there is provided a system including: a shopping server configured to receive a user request to view a virtual shopping environment of virtual shopping images with virtual objects; and a control circuit configured to: cause the display of virtual shopping images on a user computer in an interactive simulation view to emulate a real-life shopping experience for the user; determine a real time computing resource usage of the online shopping session at different times during the online shopping session; and cause the display of at least one of the virtual objects at a first, reduced resource consumption setting when the resource usage exceeds a certain limit and at a second, higher resource consumption setting when the resource usage does not exceed the limit.
    Type: Application
    Filed: October 25, 2017
    Publication date: May 3, 2018
    Inventors: Todd D. Mattingly, Donald R. High, David Tovey, Nicholas Ray Antel, John J. O'Brien
  • Publication number: 20180121997
    Abstract: In some embodiments, apparatuses and methods are provided herein useful for providing an online shopping experience that conserves computing resources. In some embodiments, there is provided a system including: a shopping server receiving a user request to view a virtual shopping environment; a control circuit causing the display of virtual shopping images on a user computer to emulate a real-life shopping experience for the user; wherein the control circuit is configured to: navigate the virtual shopping environment; cause the display of an avatar representing the user in the virtual shopping environment; cause the display of the avatar at a first resource consumption setting where the avatar is interacting with a certain type of product; and cause the display of virtual shopping images at a second, reduced resource consumption setting where the avatar is not interacting with these products.
    Type: Application
    Filed: October 25, 2017
    Publication date: May 3, 2018
    Inventors: John J. O'Brien, Todd D. Mattingly, Donald R. High, David Tovey, Nicholas Ray Antel
  • Publication number: 20180107977
    Abstract: Provided is a courier shopping system. The system includes a customer computing device for accessing and receiving data produced by the system and a server located at a service provider. The server is coupled to the customer computing device and programmed to operate a courier management system; operate a customer management system; operate a vendor payment sharing system; and operate a customer interface.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Brian Gerard McHale, Bruce Walter Wilkinson, Todd Mattingly, Anton Valkov, Donald R. High, John J. O'Brien, V
  • Publication number: 20180108062
    Abstract: Provided is a courier management system. The system includes a customer computing device for accessing and receiving data produced by the system and a server located at a service provider, the server coupled to the customer computing device. The server may be programmed to store customer preferences, generate and transmit a scalable shopping preference interface to allow a customer to select a level of courier involvement, automatically generate order instructions in response to accessing and processing the customer preferences and the level of courier involvement after receiving a shopping list. Automatically generating order instructions may include selecting a substitute or alternative product to complete the shopping list in response to automatically determining a requested product is out of stock.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Brian G. McHale, Bruce W. Wilkinson, Todd D. Mattingly, Anton Valkov, Donald R. High, John J. O'Brien, Sai Phaneendra Sri Harsha Viswanath Putcha, Balaraman Kirthigaivasan
  • Publication number: 20180108061
    Abstract: Provided is a customer interface system. The system includes a customer computing device and a server. The server may be programmed to receive from the customer computing device customer preferences and automatically store the customer preferences and to automatically generate and transmit to the customer computing device for display a scalable shopping preference interface associated with the customer preferences, wherein the scalable shopping preference interface comprises a sliding scale indicating a level of courier involvement. The system is programmed to receive from the customer computing device a signal from the scalable shopping preference interface a signal indicating selection of the level of courier involvement and store selection of courier involvement with the customer preferences and receive from the customer computing device a shopping list and automatically store the shopping list, wherein the shopping list is created in response to right clicking on a product from a web page.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Brian Gerard McHale, Bruce Walter Wilkinson, Todd Mattingly, Anton Valkov, John J. O'Brien, V
  • Publication number: 20180108026
    Abstract: Provided is a customer management system. The system includes a customer computing device for accessing and receiving data produced by the system and a server located at a service provider, the server, wherein the server coupled to the customer computing device. The server is programmed to receive from the customer computing device customer preferences and automatically store the customer preferences, and to receive from the customer computing device shopping lists over time and automatically store the shopping lists. The server may automatically generate a customer history in response to retrieving and processing the stored customer preferences and the stored shopping lists and may be programmed to receive from the customer computing device a request for a virtual expert.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Bruce Walter Wilkinson, Todd Mattingly, John J. O'Brien, V
  • Publication number: 20180108010
    Abstract: Provided is A vendor payment sharing system. The system includes a customer computing device for accessing and receiving data produced by the system and a server located at a service provider, the server coupled to the customer computing device. The server may be programmed to receive from the customer computing device an acceptance indication of the products delivered from a courier service. The server is also programmed to automatically process payment for a total amount due for the products and services related to obtaining and delivering the products and to automatically divide the payment between parties that provided services related to obtaining and delivering the products. The system further may be programmed to encrypt the payment and the division of the payment with a blockchain.
    Type: Application
    Filed: October 13, 2017
    Publication date: April 19, 2018
    Inventors: Brian Gerard McHale, Bruce Walter Wilkinson, Todd Mattingly, Anton Valkov, Donald R. High, John J. O'Brien, V
  • Publication number: 20180074521
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a first unmanned aerial vehicle (UAV) comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the first UAV to move itself; and wherein the UAV control circuit when implementing code stored in memory is configured to identify, based at least in part on a first task performed using a first tool system temporarily coupled with the first UAV, a second task to be performed by the first UAV and to identify a different second tool system to be used to perform the second task.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180072414
    Abstract: Systems, apparatuses, and methods are provided herein for unmanned flight optimization. A system for unmanned flight comprises a set of motors configured to provide locomotion to an unmanned aerial vehicle, a set of wings coupled to a body of the unmanned aerial vehicle via an actuator and configured to move relative to the body of the unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, cause the set of motors to lift the unmanned aerial vehicle, detect condition parameters based on the sensor system, determine a position for the set of wings based on the task profile and the condition parameters, and cause the actuator to move the set of wings to the wing position while the unmanned aerial vehicle is in flight.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20180074499
    Abstract: Systems, apparatuses, and methods are provided herein for field monitoring. A system for field monitoring comprises a plurality of types of sensor modules, an unmanned vehicle comprising a sensor system, and a control circuit configured to: receive onboard sensor data from the sensor system of the unmanned vehicle, detect an alert condition at a monitored area based on the onboard sensor data, select one or more types of sensor modules from the plurality of types of sensor modules to deploy at the monitored area based on the onboard sensor data, and cause the unmanned vehicle and/or one or more other unmanned vehicles to transport one or more sensor modules of the one or more types of sensor modules to the monitored area and deploy the one or more sensor modules by detaching from the one or more sensor modules at the monitored area.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074522
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system; and wherein data acquired through a first set of at least one of the multiple UAVs while performing a first set of at least one task is caused to be distributed to a second set of at least two of the multiple UAVs, and cause cooperative computational processing of the data through the UAV control circuits of the second set of UAVs and cooperatively identify based on the cooperative computational processing a second set of at least one task to be performed, and identify a set of at least two tool systems to be utilized by a third set of at least two of the multiple UAVs in cooperatively performing the second set of at least one task.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074523
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to access power level data corresponding to each of the multiple UAVs, and select a second UAV of the multiple UAVs based at least in part on a power level of the second UAV relative to a threshold power level corresponding to a first task to be performed and a predicted power usage by the second UAV while utilizing a first tool system temporarily cooperated with the second UAV in performing the first task.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180075760
    Abstract: Some embodiments provide an aerial monitoring system to monitor a geographic area, comprising: a unmanned aerial vehicle (UAV) comprising: a plurality of lift motors to drive a propeller; a substructural support supporting the lift motors and propellers; a UAV control circuit configured to control the operation of the lift motors; a rechargeable electrical power source that supplies electrical power to the UAV control circuit and the plurality of lift motors; a recharge control circuit; and a modifiable support system cooperated with the substructural support and supporting a set of photovoltaic cells electrically coupled with the rechargeable power source and configured to supply electrical power to the rechargeable power source, wherein the recharge control circuit is configured to control a modification of the modifiable support system to cause a physical modification of at least an orientation of the modifiable support system relative to the substructural support.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 15, 2018
    Inventors: John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Robert L. Cantrell, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180072415
    Abstract: In some embodiments, unmanned aerial task systems are provided that include a plurality of unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; propulsion system; and a universal coupler configured to interchangeably couple with and decouple from one of multiple different tool systems each having different functions to be put into use while carried by a UAV, wherein a coupling system of the universal coupler is configured to secure a tool system with the UAV and enable a communication connection between a communication bus and the tool system, and wherein the multiple different tool systems comprise at least a package securing tool system configured to retain and enable transport of a package while being delivered, and a sensor tool system configured to sense a condition and communicate sensor data of the sensed condition to the UAV control circuit over the communication bus.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180074518
    Abstract: Systems, apparatuses and methods are provided herein for unmanned flight optimization. A system for unmanned flight optimization comprises a flight system configured to provide locomotion to an unmanned aerial vehicle, a sensor system on the unmanned aerial vehicle, and a control circuit coupled to the flight system and the sensor system. The control circuit being configured to: retrieve a task profile for a task assigned to the unmanned aerial vehicle, detect condition parameters of the unmanned aerial vehicle based on the sensor system, determine whether to station the unmanned aerial vehicle based on the task profile and the condition parameters, and deactivate the flight system of the unmanned aerial vehicle while the unmanned aerial vehicle performs the task.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, John J. O'Brien, John F. Simon
  • Publication number: 20180074488
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable the respective UAVs to move themselves; and wherein a first UAV control circuit of a first UAV of the multiple UAVs is configured to identify a second UAV carrying a first tool system configured to perform a first function, cause a notification to be communicated to the second UAV directing the second UAV to transfer the first tool system to the first UAV, and direct a first propulsion system of the first UAV to couple with the first tool system being transferred from the second UAV.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180072416
    Abstract: In some embodiments, unmanned aerial task systems are provided that comprise: multiple unmanned aerial vehicles (UAV) each comprising: a UAV control circuit; a motor; and a propulsion system coupled with the motor and configured to enable UAV to move itself; and wherein a first UAV control circuit of a first UAV of the multiple UAVs, when implementing code stored in memory, is configured to identify, based at least in part on a first task performed using a first tool system temporarily coupled with the first UAV, a set of at least one task to be cooperatively performed by the first UAV and at least a second UAV of the multiple UAVs.
    Type: Application
    Filed: September 8, 2017
    Publication date: March 15, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon, Nathan G. Jones, Robert C. Taylor
  • Publication number: 20180068165
    Abstract: In some embodiments, methods and systems of identifying at least one pest based on crop damage detection in a crop-containing area include an unmanned vehicle including at least one sensor configured to detect at least one type of pest damage on at least one crop in the crop-containing area and to capture pest damage data. An electronic database includes pest damage identity data associated with one or more crop-damaging pests, and a computing device communicates with the unmanned vehicle and the electronic database via a network. The unmanned vehicle transmits the captured pest damage data via the network to the computing device and, in response to receipt of the captured pest damage data from the unmanned vehicle, the computing device accesses the pest damage identity data on the electronic database to determine an identity of one or more pests responsible for the detected type of pest crop damage.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180065747
    Abstract: In some embodiments, methods and systems of dispensing an insecticide to defend a crop-containing area against crop-damaging pests include an unmanned vehicle having a sensor that detects a crop-damaging pest in the crop-containing area and captures pest detection data, and an insecticide output device including at least one insecticide directed at the pest. The unmanned vehicle transmits the captured pest detection data via the network to the computing device and, in response to receipt of the captured pest detection data via the network from the unmanned vehicle, the computing device accesses an electronic database to determine an identity of the at least one pest. Based on the determined identity of the crop-damaging pest, the computing device transmits a control signal to the unmanned vehicle to cause the insecticide output device of the unmanned vehicle to dispense one or more insecticides specific to the identified crop-damaging pest.
    Type: Application
    Filed: September 7, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon
  • Publication number: 20180065749
    Abstract: In some embodiments, methods and systems of pollinating crops include one or more unmanned vehicles including a pollen applicator configured to collect pollen from a flower of a first crop and to apply the pollen collected from the flower of the first crop onto a flower of a second crop and a sensor configured to detect presence of the pollen applied to the flower of the second crop by the pollen applicator to verify that the pollen collected from the flower of the first crop by the pollen applicator was successfully applied by the pollen applicator onto the flower of the second crop.
    Type: Application
    Filed: September 6, 2017
    Publication date: March 8, 2018
    Inventors: Robert L. Cantrell, John P. Thompson, David C. Winkle, Michael D. Atchley, Donald R. High, Todd D. Mattingly, Brian G. McHale, John J. O'Brien, John F. Simon