Patents by Inventor John J. Plombon

John J. Plombon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240147867
    Abstract: Magnetoelectric magnetic tunnel junction (MEMTJ) logic devices comprise a magnetoelectric switching capacitor coupled to a pair of magnetic tunnel junctions (MTJs) by a conductive layer. The logic state of the MEMTJ is represented by the magnetization orientation of the ferromagnetic layer of the magnetoelectric capacitor, which can be switched through the application of an appropriate input voltage to the MEMTJ. The magnetization orientation of the magnetoelectric capacitor ferromagnetic layer is read out by the MTJs. The conductive layer is positioned between the capacitor and the MTJs. The MTJ ferromagnetic free layers are exchange coupled to the ferromagnetic layer of the magnetoelectric capacitor. The potential of an MTJ free layer is based on a supply voltage applied to the reference layer of the MTJ. The MTJ reference layers have a magnetization orientation that is parallel or antiparallel to the magnetization orientations of the ferromagnetic layer of the magnetoelectric capacitor.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Dominique A. Adams, Hai Li, Chia-Ching Lin, Dmitri Evgenievich Nikonov, Kaan Oguz, John J. Plombon, Ian Alexander Young
  • Publication number: 20240120415
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be etched away, leaving the doped semiconductor layers as fins for a ribbon FET. A ferroelectric layer can be conformally grown on the fins, creating a high-quality ferroelectric layer above and below the fins. A gate can then be grown on the ferroelectric layer.
    Type: Application
    Filed: October 1, 2022
    Publication date: April 11, 2024
    Applicant: Intel Corporation
    Inventors: Scott B. Clendenning, Sudarat Lee, Kevin P. O'Brien, Rachel A. Steinhardt, John J. Plombon, Arnab Sen Gupta, Charles C. Mokhtarzadeh, Gauri Auluck, Tristan A. Tronic, Brandon Holybee, Matthew V. Metz, Dmitri Evgenievich Nikonov, Ian Alexander Young
  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240113220
    Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Publication number: 20240105822
    Abstract: A transistor device may include a first perovskite gate material, a first perovskite ferroelectric material on the first gate material, a first perovskite semiconductor material on the first ferroelectric material, a second perovskite ferroelectric material on the first semiconductor material, a second perovskite gate material on the second ferroelectric material, a third perovskite ferroelectric material on the second gate material, a second perovskite semiconductor material on the third ferroelectric material, a fourth perovskite ferroelectric material on the second semiconductor material, a third perovskite gate material on the fourth ferroelectric material, a first source/drain metal adjacent a first side of each of the first semiconductor material and the second semiconductor material, a second source/drain metal adjacent a second side opposite the first side of each of the first semiconductor material and the second semiconductor material, and dielectric materials between the source/drain metals and the
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Kevin P. O'Brien, Brandon Holybee, Carly Rogan, Dmitri Evgenievich Nikonov, Punyashloka Debashis, Rachel A. Steinhardt, Tristan A. Tronic, Ian Alexander Young, Marko Radosavljevic, John J. Plombon
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Patent number: 11696514
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20230200081
    Abstract: Described herein are integrated circuit devices formed using perovskite materials. Perovskite materials with a similar crystal structure and different electrical properties can be layered to realize a transistor or memory device. In some embodiments, a ferroelectric perovskite can be incorporated into a device with other perovskite films to form a ferroelectric memory device.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, John J. Plombon, Dmitri E. Nikonov, Kevin P. O'Brien, Ian A. Young, Matthew V. Metz, Chia-Ching Lin, Scott B. Clendenning, Punyashloka Debashish, Carly Lorraine Rogan, Brandon Jay Holybee, Kaan Oguz
  • Publication number: 20230200079
    Abstract: A first type of ferroelectric capacitor comprises electrodes and an insulating layer comprising ferroelectric oxides. In some embodiments, the electrodes and the insulating layer comprise perovskite ferroelectric oxides. A second type of ferroelectric capacitor comprises a ferroelectric insulating layer comprising certain monochalcogenides. Both types of ferroelectric capacitors can have a coercive voltage that is less than one volt. Such capacitors are attractive for use in low-voltage non-volatile embedded memories for next-generation semiconductor manufacturing technologies.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Tanay A. Gosavi, Uygar E. Avci, Sou-Chi Chang, Hai Li, Dmitri Evgenievich Nikonov, Kaan Oguz, Ashish Verma Penumatcha, John J. Plombon, Ian Alexander Young
  • Patent number: 11626451
    Abstract: A magnetic memory device comprising a plurality of memory cells is disclosed. The memory device includes an array of memory cells where each memory cell includes a first material layer having a ferromagnetic material, a second material layer having ruthenium, and a third material layer having bismuth and/or antimony. The second material layer is sandwiched between the first material layer and the third material in a stacked configuration.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: April 11, 2023
    Assignee: Intel Corporation
    Inventors: Emily Walker, Carl H. Naylor, Kaan Oguz, Kevin L. Lin, Tanay Gosavi, Christopher J. Jezewski, Chia-Ching Lin, Benjamin W. Buford, Dmitri E. Nikonov, John J. Plombon, Ian A. Young, Noriyuki Sato
  • Publication number: 20230086080
    Abstract: In one embodiment, an apparatus includes a magnet, a first structure, and a second structure. The first structure includes a first conductive trace and a magnetoelectric material. The first conductive trace is coupled to an input voltage terminal, and the magnetoelectric material is coupled to the first conductive trace and the magnet. The second structure includes a superlattice structure and a second conductive trace. The superlattice structure includes one or more topological insulator materials. Moreover, the superlattice structure is coupled to the magnet and the second conductive trace, and the second conductive trace is coupled to an output voltage terminal.
    Type: Application
    Filed: September 22, 2021
    Publication date: March 23, 2023
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Dmitri Evgenievich Nikonov, Ian Alexander Young, John J. Plombon, Hai Li, Kaan Oguz, Tanay A. Gosavi, Emily Walker
  • Patent number: 11502188
    Abstract: An apparatus is provided to improve spin injection efficiency from a magnet to a spin orbit coupling material. The apparatus comprises: a first magnet; a second magnet adjacent to the first magnet; a first structure comprising a tunneling barrier; a third magnet adjacent to the first structure; a stack of layers, a portion of which is adjacent to the third magnet, wherein the stack of layers comprises spin-orbit material; and a second structure comprising magnetoelectric material, wherein the second structure is adjacent to the first magnet.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 15, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Dmitri Nikonov, Ian A. Young, Benjamin Buford, Tanay Gosavi, Kaan Oguz, John J. Plombon
  • Publication number: 20220310147
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetic insulating material (MI such as EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene), wherein the magnetic insulating material has a first magnetization; a magnet with a second magnetization, wherein the magnet is adjacent to the TMD of the stack; and an interconnect comprising a spin orbit material, wherein the interconnect is adjacent to the magnet.
    Type: Application
    Filed: June 13, 2022
    Publication date: September 29, 2022
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Patent number: 11393515
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetic insulating material (MI such as EuS, EuO, YIG, TmIG, or GaMnAs) and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, or graphene), wherein the magnetic insulating material has a first magnetization; a magnet with a second magnetization, wherein the magnet is adjacent to the TMD of the stack; and an interconnect comprising a spin orbit material, wherein the interconnect is adjacent to the magnet.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: July 19, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20220123206
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Application
    Filed: December 29, 2021
    Publication date: April 21, 2022
    Applicant: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Patent number: 11245068
    Abstract: An apparatus is provided which comprises: a stack comprising a magnetoelectric (ME such as BiFeO3, (LaBi)FeO3, LuFeO3, PMN-PT, PZT, AlN, SmBiFeO3, Cr2O3, etc.) material and a transition metal dichalcogenide (TMD such as MoS2, MoSe2, WS2, WSe2, PtS2, PtSe2, WTe2, MoTe2, graphene, etc.); a magnet adjacent to a first portion of the TMD of the stack; a first interconnect adjacent to the magnet; a second interconnect adjacent to the ME material of the stack; and a third interconnect adjacent to a second portion of the TMD of the stack.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: February 8, 2022
    Assignee: Intel Corporation
    Inventors: Chia-Ching Lin, Sasikanth Manipatruni, Tanay Gosavi, Dmitri Nikonov, Benjamin Buford, Kaan Oguz, John J. Plombon, Ian A. Young
  • Publication number: 20200395406
    Abstract: A magnetic memory device comprising a plurality of memory cells is disclosed. The memory device includes an array of memory cells where each memory cell includes a first material layer having a ferromagnetic material, a second material layer having ruthenium, and a third material layer having bismuth and/or antimony. The second material layer is sandwiched between the first material layer and the third material in a stacked configuration.
    Type: Application
    Filed: June 17, 2019
    Publication date: December 17, 2020
    Applicant: INTEL CORPORATION
    Inventors: EMILY WALKER, CARL H. NAYLOR, KAAN OGUZ, KEVIN L. LIN, TANAY GOSAVI, CHRISTOPHER J. JEZEWSKI, CHIA-CHING LIN, BENJAMIN W. BUFORD, DMITRI E. NIKONOV, JOHN J. PLOMBON, IAN A. YOUNG, NORIYUKI SATO
  • Patent number: 10658487
    Abstract: Embodiments of the present disclosure describe semiconductor devices with ruthenium phosphorus thin films and further describe the processes to deposit the thin films. The thin films may be deposited in a gate stack of a transistor device or in an interconnect structure. The processes to deposit the films may include chemical vapor deposition and may include ruthenium precursors. The precursors may contain phosphorus. A co-reactant may be used during deposition. A co-reactant may include a phosphorus based compound. A gate material may be deposited on the film in a gate stack. The ruthenium phosphorus film may be a metal diffusion barrier and an adhesion layer, and the film may be a work function metal for some embodiments. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: Scott B. Clendenning, Han Wui Then, John J. Plombon, Michael L. McSwiney
  • Patent number: 10629525
    Abstract: Embodiments of the present disclosure describe removing seams and voids in metal interconnects and associated techniques and configurations. In one embodiment, a method includes conformally depositing a metal into a recess disposed in a dielectric material to form an interconnect, wherein conformally depositing the metal creates a seam or void in the deposited metal within or directly adjacent to the recess and heating the metal in the presence of a reactive gas to remove the seam or void, wherein the metal has a melting point that is greater than a melting point of copper. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 21, 2020
    Assignee: Intel Corporation
    Inventors: Ramanan V. Chebiam, Christopher J. Jezewski, Tejaswi K. Indukuri, James S. Clarke, John J. Plombon