Patents by Inventor John J. Uebbing

John J. Uebbing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10429034
    Abstract: A variety of light-emitting devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, a light-emitting device includes one or more light-emitting elements (LEEs) disposed on a base surface that are configured to emit light, a first optical element having a first surface spaced apart from the LEEs and positioned to receive light from the LEEs, a transparent second optical coupled to the first optical element, and a reflector element adjacent the second optical element arranged to reflect a portion of light output from the second optical element.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 1, 2019
    Assignee: Quarkstar LLC
    Inventors: John J. Uebbing, Roland H. Haitz
  • Patent number: 10312422
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: June 4, 2019
    Assignee: Lumileds LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Publication number: 20180209610
    Abstract: A variety of light-emitting devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, a light-emitting device includes one or more light-emitting elements (LEEs) disposed on a base surface that are configured to emit light, a first optical element having a first surface spaced apart from the LEEs and positioned to receive light from the LEEs, a transparent second optical coupled to the first optical element, and a reflector element adjacent the second optical element arranged to reflect a portion of light output from the second optical element.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 26, 2018
    Inventors: John J. Uebbing, Roland H. Haitz
  • Publication number: 20170301838
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Application
    Filed: February 27, 2017
    Publication date: October 19, 2017
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Patent number: 9752757
    Abstract: A variety of light-emitting devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, a light-emitting device includes one or more light-emitting elements (LEEs) disposed on a base surface that are configured to emit light, a first optical element having a first surface spaced apart from the LEEs and positioned to receive light from the LEEs, a transparent second optical coupled to the first optical element, and a reflector element adjacent the second optical element arranged to reflect a portion of light output from the second optical element.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: September 5, 2017
    Assignee: Quarkstar LLC
    Inventors: John J. Uebbing, Roland H. Haitz
  • Patent number: 9583683
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 28, 2017
    Assignee: Lumileds LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Publication number: 20140191265
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Application
    Filed: December 20, 2013
    Publication date: July 10, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V
    Inventors: MICHAEL D. CAMRAS, MICHAEL R. KRAMES, WAYNE L. SNYDER, FRANK M. STERANKA, ROBERT C. TABER, JOHN J. UEBBING, DOUGLAS W. POCIUS, TROY A. TROTTIER, CHRISTOPHER H. LOWERY, GERD O. MUELLER, REGINA B. MUELLER-MACH
  • Publication number: 20140146541
    Abstract: A variety of light-emitting devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, a light-emitting device includes one or more light-emitting elements (LEEs) disposed on a base surface that are configured to emit light, a first optical element having a first surface spaced apart from the LEEs and positioned to receive light from the LEEs, a transparent second optical coupled to the first optical element, and a reflector element adjacent the second optical element arranged to reflect a portion of light output from the second optical element.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Quarkstar LLC
    Inventors: John J. Uebbing, Roland H. Haitz
  • Patent number: 8628985
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 14, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Patent number: 8415694
    Abstract: A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 9, 2013
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Publication number: 20120021543
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
    Type: Application
    Filed: October 4, 2011
    Publication date: January 26, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V
    Inventors: Michael D. CAMRAS, MICHAEL R. KRAMES, WAYNE L. SNYDER, FRANK M. STERANKA, ROBERT C. TABER, JOHN J. UEBBING, DOUGLAS W. POCIUS, TROY A. TROTTIER, CHRISTOPHER H. LOWERY, GERD O. MUELLER, REGINA B. MUELLER-MACH
  • Patent number: 8049234
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: November 1, 2011
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Publication number: 20100148151
    Abstract: A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.
    Type: Application
    Filed: February 23, 2010
    Publication date: June 17, 2010
    Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Patent number: 7643055
    Abstract: A camera system includes a first camera having a low-resolution image sensor with a plurality of image sensing regions. The camera system includes a plurality of high-resolution cameras. Each of the high-resolution cameras is associated with a set of the plurality of image sensing regions. The first camera is configured to detect motion based on sensed images, identify a set of the image sensing regions based on the motion, and power on the high-resolution camera associated with the identified set of image sensing regions.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: January 5, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: John J. Uebbing
  • Patent number: 7279345
    Abstract: A method of bonding a transparent optical element to a light emitting device having a stack of layers including semiconductor layers comprising an active region is provided. The method includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the stack together. In one embodiment, the method also includes disposing a layer of a transparent bonding material between the stack and the optical element. The bonding method can be applied to a premade optical element or to a block of optical element material which is later formed or shaped into an optical element such as a lens or an optical concentrator.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 9, 2007
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Patent number: 7064355
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent optical element (e.g., a lens or an optical concentrator) to a light emitting device comprising an active region includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the light emitting device together. A block of optical element material may be bonded to the light emitting device and then shaped into an optical element. Bonding a high refractive index optical element to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: June 20, 2006
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Patent number: 7053419
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: May 30, 2006
    Assignee: LumiLeds Lighting U.S., LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Patent number: 6904192
    Abstract: An optical switch having liquid or bubbles in switching sites operates with a fluid pressure less than the vapor pressure of the liquid. This pressure differential is equal to the surface tension induced pressure drop across a bubble having a critical size selected according to switching site geometry. Each switching site has a stable state including a bubble larger than the critical size and another stable state with no bubble. Local heating provides nucleation energy to create a bubble but is not required to maintain the bubble. Globally or locally increasing the fluid pressure collapses bubbles in switching sites to reset all or selected switching sites. One switching site creates rapidly expanding bubbles near but outside the optical cavity of the switching site. The bubble's expansion causes liquid flow that locally increases pressure and collapses a bubble in the optical cavity or pushes the bubble from the optical cavity into an absorber cavity.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: June 7, 2005
    Assignee: Agilent Technologies, Inc
    Inventors: Dale W. Schroeder, John J. Uebbing
  • Publication number: 20040212677
    Abstract: A camera system includes a first camera having a low-resolution image sensor with a plurality of image sensing regions. The camera system includes a plurality of high-resolution cameras. Each of the high-resolution cameras is associated with a set of the plurality of image sensing regions. The first camera is configured to detect motion based on sensed images, identify a set of the image sensing regions based on the motion, and power on the high-resolution camera associated with the identified set of image sensing regions.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventor: John J. Uebbing
  • Publication number: 20040076363
    Abstract: The optical switch operates in two stages. In the first stage, the bubble is “blown” into the trench by either sidewall heaters or a dedicated central heater. In the second stage, the sidewalls are heated to achieve a dry wall condition by improving the thermal transfer path from the heat source to the reflecting wall. The sidewall heaters are positioned such that there is an indirect thermal path to the sidewalls of the trench. This results in a switch that is more stable, energy efficient, and has a longer mean time to failure.
    Type: Application
    Filed: October 16, 2002
    Publication date: April 22, 2004
    Inventors: Dale W. Schroeder, John J. Uebbing