Patents by Inventor John Jensvold

John Jensvold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11660565
    Abstract: A device for separating a gas, such as air, into components, includes a plurality of modules, each module having one or more polymeric membranes capable of gas separation. A set of valves, pipes, and manifolds together arrange the modules in one of two possible configurations. In a first configuration, the modules are arranged in parallel. In a second configuration, the modules are divided into two groups which are arranged in series. The device can be switched from parallel to series, or from series to parallel, simply by changing the positions of a small number of valves, typically three valves. The device can therefore produce gas either of higher purity, or moderate purity, depending on the settings of the valves. The device also includes improved structures for connecting the modules to inlet and outlet manifolds, and also includes devices for temporarily isolating one or more modules from the system.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: May 30, 2023
    Assignee: Generon IGS, Inc.
    Inventors: Steven Reese, Marc Straub, John A. Jensvold, Robert Kociolek
  • Patent number: 11654401
    Abstract: A cartridge for non-cryogenically separating a gas into components includes a plurality of hollow polymeric fibers, the fibers being anchored by a pair of tubesheets, each tubesheet being adjacent to a head, the tubesheet and head being joined by a clamshell retainer. The cartridge does not have a core tube. The fibers are enclosed within a sleeve, the sleeve being sufficiently thin so as to be a non-structural element. The cartridge may be inserted within a larger pressure vessel. The cartridge of the present invention can accommodate more fibers than comparable cartridges of the prior art, and therefore has greater throughput.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: May 23, 2023
    Assignee: Generon IGS, Inc.
    Inventors: Robert Kociolek, Marc Straub, Frederick L. Coan, Luis Brizuela, John A. Jensvold, Kyle Jensvold, Karen Skala
  • Publication number: 20230130439
    Abstract: A cartridge for non-cryogenically separating a gas into components includes a plurality of hollow polymeric fibers, the fibers being anchored by a pair of tubesheets, each tubesheet being adjacent to a head, the tubesheet and head being joined by a clamshell retainer. The cartridge does not have a core tube. The fibers are enclosed within a sleeve, the sleeve being sufficiently thin so as to be a non-structural element. The cartridge may be inserted within a larger pressure vessel. The cartridge of the present invention can accommodate more fibers than comparable cartridges of the prior art, and therefore has greater throughput.
    Type: Application
    Filed: October 25, 2021
    Publication date: April 27, 2023
    Inventors: Robert Kociolek, Marc Straub, Frederick L. Coan, Luis Brizuela, John A. Jensvold, Kyle Jensvold, Karen Skala
  • Patent number: 11103827
    Abstract: A two-stage gas-separation membrane system includes two identical membrane modules held within a single casing. A feed gas is directed into the first module, so as to produce permeate and retentate streams. One of the latter streams then becomes the feed gas for the second module, and reaches the second module through a core tube located within the module. The product of the second module is the product gas for the system. The gas streams entering the two modules flow in mutually opposite directions. This arrangement makes it feasible to provide a two-stage system while using only the number of ports that would be needed for a single stage.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 31, 2021
    Assignee: Generon IGS, Inc.
    Inventors: Frederick L. Coan, John A. Jensvold, Robert Kociolek, Marc Straub
  • Patent number: 10933369
    Abstract: An air dehydration module includes polymeric fibers for separating water vapor from air, and also includes a carbon filter material, positioned at an outlet end of the module, and within the same pressure vessel which houses the fibers. The module may generate its own sweep stream, in which case a portion of its output is directed to flow through an orifice, towards the inlet end of the module. In an alternative embodiment, the sweep gas is produced by a distinct gas-separation module, which receives an input stream from the output of the dehydration module. The dehydration module produces clean and dry air which can be used as is, or as an input stream to an air separation module.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: March 2, 2021
    Assignee: Generon IGS, Inc.
    Inventors: Marc Straub, Luis Brizuela, John A. Jensvold
  • Publication number: 20210023500
    Abstract: A device for separating a gas, such as air, into components, includes a plurality of modules, each module having one or more polymeric membranes capable of gas separation. A set of valves, pipes, and manifolds together arrange the modules in one of two possible configurations. In a first configuration, the modules are arranged in parallel. In a second configuration, the modules are divided into two groups which are arranged in series. The device can be switched from parallel to series, or from series to parallel, simply by changing the positions of a small number of valves, typically three valves. The device can therefore produce gas either of higher purity, or moderate purity, depending on the settings of the valves. The device also includes improved structures for connecting the modules to inlet and outlet manifolds, and also includes devices for temporarily isolating one or more modules from the system.
    Type: Application
    Filed: October 14, 2020
    Publication date: January 28, 2021
    Inventors: Steven Reese, Marc Straub, John A. Jensvold, Robert Kociolek
  • Patent number: 10843127
    Abstract: A device for separating a gas, such as air, into components, includes a plurality of modules, each module having one or more polymeric membranes capable of gas separation. A set of valves, pipes, and manifolds together arrange the modules in one of two possible configurations. In a first configuration, the modules are arranged in parallel. In a second configuration, the modules are divided into two groups which are arranged in series. The device can be switched from parallel to series, or from series to parallel, simply by changing the positions of a small number of valves, typically three valves. The device can therefore produce gas either of higher purity, or moderate purity, depending on the settings of the valves.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: November 24, 2020
    Assignee: Generon IGS, Inc.
    Inventors: Steven Reese, Marc Straub, John A. Jensvold
  • Publication number: 20200246750
    Abstract: A two-stage gas-separation membrane system includes two identical membrane modules held within a single casing. A feed gas is directed into the first module, so as to produce permeate and retentate streams. One of the latter streams then becomes the feed gas for the second module, and reaches the second module through a core tube located within the module. The product of the second module is the product gas for the system. The gas streams entering the two modules flow in mutually opposite directions. This arrangement makes it feasible to provide a two-stage system while using only the number of ports that would be needed for a single stage.
    Type: Application
    Filed: January 8, 2020
    Publication date: August 6, 2020
    Inventors: Frederick L. Coan, John A. Jensvold, Robert Kociolek, Marc Straub
  • Patent number: 10561978
    Abstract: A multi-stage polymeric membrane module system separates a gas, such as air, into components of high purity. In at least two of the stages, a portion of the retentate gas is directed into the low-pressure side of the module, to act as a sweep gas. The use of the sweep gas reduces the partial pressure of permeate gas on the low-pressure side of the membrane, and therefore improves the flow of permeate through the membrane. In a preferred embodiment, there are three modules. The output streams are taken from the retentate outlet of one module, and from the permeate outlet of another module. The output streams have very high purity, relative to the number of modules required, as compared with systems of the prior art.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: February 18, 2020
    Assignee: Generon IGS, Inc.
    Inventors: John A. Jensvold, Kyle A. Jensvold
  • Publication number: 20190358581
    Abstract: An air dehydration module includes polymeric fibers for separating water vapor from air, and also includes a carbon filter material, positioned at an outlet end of the module, and within the same pressure vessel which houses the fibers. The module may generate its own sweep stream, in which case a portion of its output is directed to flow through an orifice, towards the inlet end of the module. In an alternative embodiment, the sweep gas is produced by a distinct gas-separation module, which receives an input stream from the output of the dehydration module. The dehydration module produces clean and dry air which can be used as is, or as an input stream to an air separation module.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 28, 2019
    Inventors: Marc Straub, Luis Brizuela, John A. Jensvold
  • Publication number: 20190143263
    Abstract: A device for separating a gas, such as air, into components, includes a plurality of modules, each module having one or more polymeric membranes capable of gas separation. A set of valves, pipes, and manifolds together arrange the modules in one of two possible configurations. In a first configuration, the modules are arranged in parallel. In a second configuration, the modules are divided into two groups which are arranged in series. The device can be switched from parallel to series, or from series to parallel, simply by changing the positions of a small number of valves, typically three valves. The device can therefore produce gas either of higher purity, or moderate purity, depending on the settings of the valves.
    Type: Application
    Filed: October 12, 2018
    Publication date: May 16, 2019
    Inventors: Steven Reese, Marc Straub, John A. Jensvold
  • Publication number: 20190046922
    Abstract: A multi-stage polymeric membrane module system separates a gas, such as air, into components of high purity. In at least two of the stages, a portion of the retentate gas is directed into the low-pressure side of the module, to act as a sweep gas. The use of the sweep gas reduces the partial pressure of permeate gas on the low-pressure side of the membrane, and therefore improves the flow of permeate through the membrane. In a preferred embodiment, there are three modules. The output streams are taken from the retentate outlet of one module, and from the permeate outlet of another module. The output streams have very high purity, relative to the number of modules required, as compared with systems of the prior art.
    Type: Application
    Filed: February 13, 2018
    Publication date: February 14, 2019
    Inventors: John A. Jensvold, Kyle A. Jensvold
  • Publication number: 20180361311
    Abstract: A non-cryogenic system for producing high-purity nitrogen is connected to a coiled-tubing unit. The nitrogen is produced by passing compressed ambient air through two polymeric membrane modules connected in series. The output of the second module is a stream of high-purity nitrogen, which is conveyed into a coiled tube. The nitrogen can be used for inerting the interior of the tube, or the coiled tube can be inserted into an oil well, for delivering nitrogen into the well. The use of nitrogen in a coiled tube helps to prevent corrosion in the tube.
    Type: Application
    Filed: December 7, 2016
    Publication date: December 20, 2018
    Inventors: John Font, Ky Doucet, Marc Straub, John A. Jensvold
  • Patent number: 9764275
    Abstract: A module having polymeric gas-separation membranes is capable of operation in extreme temperature environments. In one embodiment, the module includes polymeric fiber membranes, a tubesheet for holding the membranes, and a sleeve encasing the membranes, all of which are made of materials having coefficients of thermal expansion which differ from each other by not more than about 10%. In another embodiment, the membranes, the tubesheet, and the sleeve are all made of materials having a glass transition temperature greater than a highest anticipated temperature of operation of the module. In another embodiment, the module includes a head, and a clamshell having multiple protrusions which engage corresponding grooves in the head and in at least two grooves formed in the tubesheet.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 19, 2017
    Assignee: Generon IGS, Inc.
    Inventors: Jeff C. Schletz, Frederick L. Coan, Karen Skala, Marc Straub, Kyle A. Jensvold, John A. Jensvold, Luis Brizuela
  • Patent number: 9545599
    Abstract: A gaseous component is extracted non-cryogenically from a feed gas containing condensable hydrocarbons. The feed gas is passed first through a module containing polymeric fibers useful for removing water vapor from the gas. The gas is then passed through a module containing polymeric fibers selected such that they remove some, but not all, of the carbon dioxide in the stream. The gas is then passed through a module containing polymeric fibers selected to remove at least some of the remaining carbon dioxide as well as heavy hydrocarbons, defined as C5 and heavier, from the stream. The invention is especially useful in processing raw methane taken from a well, and in producing methane which is relatively free of water vapor, carbon dioxide, and heavy hydrocarbons.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: January 17, 2017
    Assignee: Generon IGS, Inc.
    Inventors: Marc Straub, John A. Jensvold
  • Publication number: 20160303507
    Abstract: A gas separation membrane module includes hollow polymeric fibers held within a casing, the fibers being anchored by tubesheets at the ends of the casing. A filter material, preferably made of an activated carbon fiber fabric, is integral with the module, such that all gas entering the module must pass first through the filter before reaching the fibers. The filter may have the form of a circular pad affixed to one of the tubesheets. Alternatively, the filter could be a wrap disposed around the fibers, inside the casing. In another alternative, the filter could be provided within a core tube, in cases where a feed gas is introduced through the core of the module. In another embodiment, the filter could be provided in a separate unit from the gas separation module.
    Type: Application
    Filed: September 10, 2015
    Publication date: October 20, 2016
    Inventors: John A. Jensvold, Marc Straub, Kyle A. Jensvold, Jeff C. Schletz
  • Publication number: 20160045858
    Abstract: A module having polymeric gas-separation membranes is capable of operation in extreme temperature environments. In one embodiment, the module includes polymeric fiber membranes, a tubesheet for holding the membranes, and a sleeve encasing the membranes, all of which are made of materials having coefficients of thermal expansion which differ from each other by not more than about 10%. In another embodiment, the membranes, the tubesheet, and the sleeve are all made of materials having a glass transition temperature greater than a highest anticipated temperature of operation of the module. In another embodiment, the module includes a head, and a clamshell having multiple protrusions which engage corresponding grooves in the head and in at least two grooves formed in the tubesheet.
    Type: Application
    Filed: June 22, 2015
    Publication date: February 18, 2016
    Inventors: Jeff C. Schletz, Frederick L. Coan, Karen Skala, Marc Straub, Kyle A. Jensvold, John A. Jensvold, Luis Brizuela
  • Patent number: 9034957
    Abstract: A composition for making polymeric fiber membranes, for use in non-cryogenic separation of gases, substantially improves product flow, with only a small decrease in the recovery ratio. The composition is a spin dope including tetrabromo bis-phenol A polycarbonate (TBBA-PC) and tetrabromo bishydroxyphenylfluorene polycarbonate (TBBHPF-PC), in proportions, by weight, ranging (in percent) from about 60/40 to 40/60, and n-methyl pyrrolidinone (NMP) and triethylene glycol (TEG), wherein the ratio of the amounts of NMP to TEG, by weight, is in the range of about 1.6-2.5. The spin dope is used to make hollow fibers for use in gas-separation membrane modules.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: May 19, 2015
    Assignee: Generon IGS, Inc.
    Inventors: John A. Jensvold, Frederick L. Coan, Arthur J. Barajas
  • Publication number: 20140243572
    Abstract: A gaseous component is extracted non-cryogenically from a feed gas containing condensable hydrocarbons. The feed gas is passed first through a module containing polymeric fibers useful for removing water vapor from the gas. The gas is then passed through a module containing polymeric fibers selected such that they remove some, but not all, of the carbon dioxide in the stream. The gas is then passed through a module containing polymeric fibers selected to remove at least some of the remaining carbon dioxide as well as heavy hydrocarbons, defined as C5 and heavier, from the stream. The invention is especially useful in processing raw methane taken from a well, and in producing methane which is relatively free of water vapor, carbon dioxide, and heavy hydrocarbons.
    Type: Application
    Filed: January 15, 2014
    Publication date: August 28, 2014
    Applicant: Generon IGS, Inc.
    Inventors: Marc Straub, John A. Jensvold
  • Publication number: 20140187683
    Abstract: A composition for making polymeric fiber membranes, for use in non-cryogenic separation of gases, substantially improves product flow, with only a small decrease in the recovery ratio. The composition is a spin dope including tetrabromo bis-phenol A polycarbonate (TBBA-PC) and tetrabromo bishydroxyphenylfluorene polycarbonate (TBBHPF-PC), in proportions, by weight, ranging (in percent) from about 60/40 to 40/60, and n-methyl pyrrolidinone (NMP) and triethylene glycol (TEG), wherein the ratio of the amounts of NMP to TEG, by weight, is in the range of about 1.6-2.5. The spin dope is used to make hollow fibers for use in gas-separation membrane modules.
    Type: Application
    Filed: October 16, 2013
    Publication date: July 3, 2014
    Applicant: Generon IGS, Inc.
    Inventors: John A. Jensvold, Frederick L. Coan, Arthur J. Barajas