Patents by Inventor John Joseph Costello

John Joseph Costello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7937971
    Abstract: Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: John Joseph Costello, III, James Henry Faler, Andrey V Filippov, Steven Joseph Gregorski, Bruce Warren Reding, John Christopher Thomas
  • Patent number: 7926304
    Abstract: A non-contact method for measuring the tension applied to a drawn optical fiber includes drawing an optical fiber and displacing the optical fiber by applying a pressurized fluid to the optical fiber. The pressurized fluid may be applied to the optical fiber using a fluid bearing. The fluid bearing may include a fiber support channel. The optical fiber may be directed through the fiber support channel and is displaced relative to the fluid bearing by supplying the pressurized fluid to the fiber support channel. The displacement of the optical fiber caused by the application of the pressurized fluid to the optical fiber may then be measured. The tension applied to the optical fiber may then be determined based on the determined displacement.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: April 19, 2011
    Assignee: Corning Incorporated
    Inventors: John Joseph Costello, III, Andrey V. Filippov
  • Patent number: 7918954
    Abstract: An apparatus for sealing a substrate assembly by applying a force to the assembly while simultaneously exposing the substrate assembly, and in particular a sealing material disposed between two substrates of the substrate assembly, to an irradiating beam of electromagnetic energy. The beam heats, cures and/or melts the sealing material, depending upon the sealing material to form the seal. The force is applied by directing a flow of fluid against the substrate assembly, and beneficially improves contact between the substrates of the substrate assembly and the sealing material during the sealing process, therefore assisting in achieving a hermetic seal between the substrates.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: April 5, 2011
    Assignee: Corning Incorporated
    Inventors: Jeffrey Michael Amsden, James Joseph Bernas, John Joseph Costello, III, Margaret Helen Gentile, Mark Andrew Stocker, Lu Zhang
  • Publication number: 20110073259
    Abstract: An apparatus for sealing a substrate assembly by applying a force to the assembly while simultaneously exposing the substrate assembly, and in particular a sealing material disposed between two substrates of the substrate assembly, to an irradiating beam of electromagnetic energy. The beam heats, cures and/or melts the sealing material, depending upon the sealing material to form the seal. The force is applied by directing a flow of fluid against the substrate assembly, and beneficially improves contact between the substrates of the substrate assembly and the sealing material during the sealing process, therefore assisting in achieving a hermetic seal between the substrates.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 31, 2011
    Inventors: Jeffrey Michael Amsden, James Joseph Bernas, John Joseph Costello, III, Margaret Helen Gentile, Mark Andrew Stocker, Lu Zhang
  • Publication number: 20100281922
    Abstract: Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
    Type: Application
    Filed: November 26, 2007
    Publication date: November 11, 2010
    Inventors: John Joseph Costello, III, James Henry Faler, Andrey V. Filippov, Steven Joseph Gregorski, Bruce Warren Reding, John Christopher Thomas
  • Publication number: 20090217710
    Abstract: A non-contact method for measuring the tension applied to a drawn optical fiber includes drawing an optical fiber and displacing the optical fiber by applying a pressurized fluid to the optical fiber. The pressurized fluid may be applied to the optical fiber using a fluid bearing. The fluid bearing may include a fiber support channel. The optical fiber may be directed through the fiber support channel and is displaced relative to the fluid bearing by supplying the pressurized fluid to the fiber support channel. The displacement of the optical fiber caused by the application of the pressurized fluid to the optical fiber may then be measured. The tension applied to the optical fiber may then be determined based on the determined displacement.
    Type: Application
    Filed: April 7, 2008
    Publication date: September 3, 2009
    Inventors: John Joseph Costello, III, Andrey V. Filippov
  • Publication number: 20090133807
    Abstract: An apparatus for sealing a substrate assembly by applying a force to the assembly while simultaneously exposing the substrate assembly, and in particular a sealing material disposed between two substrates of the substrate assembly, to an irradiating beam of electromagnetic energy. The beam heats, cures and/or melts the sealing material, depending upon the sealing material to form the seal. The force is applied by directing a flow of fluid against the substrate assembly, and beneficially improves contact between the substrates of the substrate assembly and the sealing material during the sealing process, therefore assisting in achieving a hermetic seal between the substrates.
    Type: Application
    Filed: October 6, 2008
    Publication date: May 28, 2009
    Inventors: Jeffrey Michael Amsden, James Joseph Bernas, John Joseph Costello, III, Margaret Helen Gentile, Mark Andrew Stocker, Lu Zhang
  • Publication number: 20070249098
    Abstract: A bonding plate mechanism for use in anodic bonding of first and second material sheets together, the apparatus comprising: a base including first and second spaced apart surfaces; a thermal insulator supported by the second surface of the base and operable to impede heat transfer to the base; a heating disk directly or indirectly coupled to the insulator and operable to produce heat in response to electrical power; and a thermal spreader directly or indirectly coupled to the heating disk and operable to at least channel heat from the heating disk, and impart voltage, to the first material sheet, wherein the heat and voltage imparted to the first material sheet are in accordance with respective heating and voltage profiles to assist in the anodic bonding of the first and second material sheets, and a thermal inertia of the bonding plate mechanism is relatively low such that heating of the first material sheet to a temperature of about 600° C. or greater is achieved in less than about one-half hour.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 25, 2007
    Inventors: Raymond Charles Cady, Alexander Lakota, William Edward Lock, John Christopher Thomas, John Joseph Costello
  • Patent number: 6603216
    Abstract: An exciter circuit for firing one or more igniter plugs in an aircraft ignition system. The exciter circuit includes an input node capable of receiving an alternating-current (AC) voltage with a variable frequency and amplitude, a pair of tank capacitors used as energy storage devices, a charging circuit for charging the tank capacitors, a discharge circuit for providing spark energy from the capacitors to two igniters, and a spark gap to initiate the discharge once the capacitors have been charged to a sufficient voltage. The charging circuit includes a step-up ferro-resonant transformer network and a full-wave rectifier. The transformer network includes a saturating transformer, a choke coil in series with the transformer primary, and one or more tuning capacitors connected to a center tap on the primary.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: August 5, 2003
    Assignee: Champion Aerospace Inc.
    Inventor: John Joseph Costello
  • Publication number: 20030067284
    Abstract: An exciter circuit for firing one or more igniter plugs in an aircraft ignition system. The exciter circuit includes an input node capable of receiving an alternating-current (AC) voltage with a variable frequency and amplitude, a pair of tank capacitors used as energy storage devices, a charging circuit for charging the tank capacitors, a discharge circuit for providing spark energy from the capacitors to two igniters, and a spark gap to initiate the discharge once the capacitors have been charged to a sufficient voltage. The charging circuit includes a step-up ferro-resonant transformer network and a full-wave rectifier. The transformer network includes a saturating transformer, a choke coil in series with the transformer primary, and one or more tuning capacitors connected to a center tap on the primary.
    Type: Application
    Filed: October 10, 2001
    Publication date: April 10, 2003
    Applicant: Champion Aerospace Inc.
    Inventor: John Joseph Costello