Patents by Inventor John Joseph KEATING

John Joseph KEATING has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11306190
    Abstract: A method for modifying a polymeric surface is disclosed. The polymeric surface is activated utilizing atmospheric pressure plasma. An atom transfer radical polymerization initiator is then coupled to the activated surface. A monomer is then polymerized on the activated surface utilizing an activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) process. The method enables brush-modification of the polymeric surface, even if the polymeric surface is substantially chemically inert. By way of example, the method enables a chemically inert, substantially hydrophobic polymer surface to be functionalized with substantially hydrophilic polymer brushes. The methods of the present disclosure have general applicability to a myriad of implementations where tunable surface chemistry is advantageous, such as filtration membranes, marine surfaces, and medical devices seeking a biocompatible coating.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: April 19, 2022
    Assignee: Rensselaer Polytechnic Institute
    Inventors: John Joseph Keating, Georges Belfort, Istvan Zsolt Kocsis, Mirco Sorci, Alexander Kenneth Lee
  • Publication number: 20210237002
    Abstract: Functionalized membranes are produced via grafting of polymer brushes to the membrane surface for use, e.g., in separation and purification of biomolecules. One or more initiators are attached to the membrane surface. A reactant substrate, such as a copper metal plate, is placed adjacent the membrane. A reaction medium is then provided in fluid contact with the membrane and the reactant substrate, the reaction medium including one or more monomers, one or more ligands, and one or more solvents. The polymer brushes are grown on the membrane via Cu(0)-mediated controlled radical polymerization involving the reactant substrate and the reaction medium. This reaction process uses fewer numbers and amounts of chemicals compared to other controlled radical polymerization reactions such as ATRP. The reaction can take place at room temperature, which is more energy efficient than other CRPs which occur at a much higher temperatures.
    Type: Application
    Filed: June 5, 2019
    Publication date: August 5, 2021
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Somdatta Bhattacharya, John Joseph Keating, Georges Belfort
  • Patent number: 11065585
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: July 20, 2021
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Georges Belfort, Joseph Grimaldi, Joseph Imbrogno, James Kilduff, John Joseph Keating
  • Patent number: 11045772
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: June 29, 2021
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Georges Belfort, Joseph Grimaldi, Joseph Imbrogno, James Kilduff, John Joseph Keating
  • Publication number: 20200353425
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Application
    Filed: July 29, 2020
    Publication date: November 12, 2020
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Georges BELFORT, Joseph GRIMALDI, Joseph IMBROGNO, James KILDUFF, John Joseph KEATING
  • Patent number: 10758872
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: September 1, 2020
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Georges Belfort, Joseph Grimaldi, Joseph Imbrogno, James Kilduff, John Joseph Keating
  • Publication number: 20200139308
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Georges BELFORT, Joseph GRIMALDI, Joseph IMBROGNO, James KILDUFF, John Joseph KEATING
  • Publication number: 20190345302
    Abstract: A method for modifying a polymeric surface is disclosed. The polymeric surface is activated utilizing atmospheric pressure plasma. An atom transfer radical polymerization initiator is then coupled to the activated surface. A monomer is then polymerized on the activated surface utilizing an activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP) process. The method enables brush-modification of the polymeric surface, even if the polymeric surface is substantially chemically inert. By way of example, the method enables a chemically inert, substantially hydrophobic polymer surface to be functionalized with substantially hydrophilic polymer brushes. The methods of the present disclosure have general applicability to a myriad of implementations where tunable surface chemistry is advantageous, such as filtration membranes, marine surfaces, and medical devices seeking a biocompatible coating.
    Type: Application
    Filed: September 8, 2017
    Publication date: November 14, 2019
    Applicant: Rensselaer Polytechnic Institute
    Inventors: John Joseph KEATING, Georges BELFORT, Istvan Zsolt KOCSIS, Mirco SORCI, Alexander Kenneth LEE
  • Publication number: 20190070567
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Application
    Filed: November 5, 2018
    Publication date: March 7, 2019
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Georges BELFORT, Joseph GRIMALDI, Joseph IMBROGNO, James KILDUFF, John Joseph KEATING
  • Patent number: 10118134
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: November 6, 2018
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Georges Belfort, Joseph Grimaldi, Joseph Imbrogno, James Kilduff, John Joseph Keating, IV
  • Publication number: 20170312698
    Abstract: The present invention relates to synthetic membranes and use of these synthetic membranes for isolation of volatile organic compounds and purification of water. The synthetic membrane includes a hydrophobic polymer layer located on a polymeric membrane support layer. The invention includes a method of isolating volatile organic compounds with the synthetic membrane by contacting a volatile organic mixture with the hydrophobic polymer layer of the synthetic membrane and removing volatile organic compounds from the polymeric membrane support layer of the synthetic membrane by a process of pervaporation. The invention also includes a method of purifying water with the synthetic membrane by contacting an ionic solution with the hydrophobic polymer layer of the synthetic membrane and removing water from the polymeric membrane support layer of the synthetic membrane by a process of reverse osmosis. The invention also relates to methods of isolating non-polar gases by gas fractionation.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 2, 2017
    Inventors: Georges BELFORT, Joseph GRIMALDI, Joseph IMBROGNO, James KILDUFF, John Joseph KEATING, IV