Patents by Inventor John Kenna

John Kenna has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240083101
    Abstract: Flexible graphite and other graphite materials with surface micro-texturing, and methods and apparatuses for micro-texturing the surface of flexible graphite and other graphite materials are provided. Micro-texturing can be used to modify wettability and/or adhesion characteristics of a flexible graphite surface. Micro-textured flexible graphite materials can be advantageously used in applications where the material is in contact with liquid water or other liquids.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 14, 2024
    Inventor: John Kenna
  • Publication number: 20240021495
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Application
    Filed: July 28, 2023
    Publication date: January 18, 2024
    Inventor: John Kenna
  • Patent number: 11840013
    Abstract: Flexible graphite and other graphite materials with surface micro-texturing, and methods and apparatuses for micro-texturing the surface of flexible graphite and other graphite materials are provided. Micro-texturing can be used to modify wettability and/or adhesion characteristics of a flexible graphite surface. Micro-textured flexible graphite materials can be advantageously used in applications where the material is in contact with liquid water or other liquids.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: December 12, 2023
    Assignee: Matthews International Corporation
    Inventor: John Kenna
  • Patent number: 11742257
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: August 29, 2023
    Assignee: 0908905 B.C. Ltd.
    Inventor: John Kenna
  • Patent number: 11570933
    Abstract: Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: January 31, 2023
    Assignee: 0908905 B.C. Ltd.
    Inventor: John Kenna
  • Publication number: 20190263048
    Abstract: Flexible graphite and other graphite materials with surface micro-texturing, and methods and apparatuses for micro-texturing the surface of flexible graphite and other graphite materials are provided. Micro-texturing can be used to modify wettability and/or adhesion characteristics of a flexible graphite surface. Micro-textured flexible graphite materials can be advantageously used in applications where the material is in contact with liquid water or other liquids.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 29, 2019
    Inventor: John Kenna
  • Publication number: 20190122952
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventor: John Kenna
  • Publication number: 20190124793
    Abstract: Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventor: John Kenna
  • Patent number: 10194561
    Abstract: Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: January 29, 2019
    Assignee: Terrella Energy Systems Ltd.
    Inventor: John Kenna
  • Patent number: 10186472
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: January 22, 2019
    Assignee: Terrella Energy Systems Ltd.
    Inventors: John Kenna, Gregory James, Norman Chor, Shoji Kanamori
  • Publication number: 20180132384
    Abstract: Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
    Type: Application
    Filed: June 22, 2017
    Publication date: May 10, 2018
    Inventor: John Kenna
  • Publication number: 20180022737
    Abstract: Disclosed are novel crystalline forms of (S)-5-benzyl-N-(5-methyl-4-oxo-2,3,4,5-tetrahydrobenzo[b][1,4]oxazepin-3-yl)-4H-1,2,4-triazole-3-carboxamide, and solvates thereof and pharmaceutical compositions containing the same. Also disclosed are processes for the preparation thereof and methods for use thereof.
    Type: Application
    Filed: February 12, 2016
    Publication date: January 25, 2018
    Inventors: Ann Marie DIEDERICH, Philip Anthony HARRIS, Robert HERRMANN, John KENNA, Lara Kathryn LEISTER
  • Publication number: 20170348811
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 7, 2017
    Inventors: John Kenna, Gregory James, Norman Chor, Shoji Kanamori
  • Patent number: 9706684
    Abstract: Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: July 11, 2017
    Assignee: Terrella Energy Systems Ltd.
    Inventor: John Kenna
  • Patent number: 9700968
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: July 11, 2017
    Assignee: Terrella Energy Systems Ltd.
    Inventors: John Kenna, Gregory James, Norman Chor, Shoji Kanamori
  • Publication number: 20170006736
    Abstract: Exfoliated graphite materials, and composite materials including exfoliated graphite, having enhanced through-plane thermal conductivity can be used in thermal management applications and devices. Methods for making such materials and devices involve processing exfoliated graphite materials such as flexible graphite to orient or re-orient the graphite flakes in one or more regions of the material.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 5, 2017
    Inventor: John Kenna
  • Publication number: 20150189792
    Abstract: Methods and apparatus for processing flexible graphite sheet material involve patterning the material, on at least one major surface, prior to further processing of the material such as densification, lamination, folding or shaping into three-dimensional structures. For densification and lamination, the patterning is selected to facilitate the removal of air from the flexible graphite sheet material during the densification and lamination process. For folding or shaping, the patterning is selected to render the graphite sheet material more flexible. In some embodiments, methods for increasing the through-plane conductivity of flexible graphite sheet material are employed. Integrated heat removal devices include sheets of graphite material that have been selectively patterned in different regions to impart desirable localized properties to the material prior to it being shaped or formed into an integrated heat removal device.
    Type: Application
    Filed: December 26, 2014
    Publication date: July 2, 2015
    Inventors: John Kenna, Gregory James, Norman Chor, Shoji Kanamori
  • Patent number: 6586128
    Abstract: Flow fields comprising a set of fluid distribution channels may be employed in fuel cells for purposes of distributing fluid reactants to an electrochemically active area of the fuel cell. Water management and reactant distribution may be improved by increasing pressure gradients between adjacent channels. Such pressure gradients may be increased by engineering the channels such that the resistance to reactant flow differs along the length of adjacent channels.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: July 1, 2003
    Assignee: Ballard Power Systems, Inc.
    Inventors: Mark C. Johnson, David P. Wilkinson, John Kenna, Olen R. Vanderleeden, Joerg Zimmerman, Mehrzad Tabatabaian