Patents by Inventor John Knoll
John Knoll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11671717Abstract: Embodiments of the disclosure provide systems and methods for motion capture to generate content (e.g., motion pictures, television programming, videos, etc.). An actor or other performing being can have multiple markers on his or her face that are essentially invisible to the human eye, but that can be clearly captured by camera systems of the present disclosure. Embodiments can capture the performance using two different camera systems, each of which can observe the same performance but capture different images of that performance. For instance, a first camera system can capture the performance within a first light wavelength spectrum (e.g., visible light spectrum), and a second camera system can simultaneously capture the performance in a second light wavelength spectrum different from the first spectrum (e.g., invisible light spectrum such as the IR light spectrum). The images captured by the first and second camera systems can be combined to generate content.Type: GrantFiled: May 20, 2020Date of Patent: June 6, 2023Assignee: LUCASFILM ENTERTAINMENT COMPANY LTD.Inventors: John Knoll, Leandro Estebecorena, Stephane Grabli, Per Karefelt, Pablo Helman, John M. Levin
-
Publication number: 20220023520Abstract: An oxygenator apparatus for use in an extracorporeal circuit. The apparatus includes a housing and a membrane assembly disposed within the housing. The membrane assembly includes a first plurality of gas exchange elements disposed in a first zone and a second plurality of gas exchange elements disposed in a second zone. The second zone is arranged concentrically around the first zone. The first and second plurality of gas exchange elements are fluidly open along a body and fluidly separated along a distal end. The first zone is configured to be fluidly coupled to an oxygen source and the second zone is configured to be fluidly coupled to a negative pressure source. A blood flow path includes a generally radial flow through the first zone to add oxygen to the blood and the second zone to separate gaseous micro emboli from the blood through the plurality of gas exchange elements.Type: ApplicationFiled: October 8, 2021Publication date: January 27, 2022Applicant: Medtronic, Inc.Inventors: John Knoll, Neil Nye, Brian Steffens, Michael Van Driel
-
Publication number: 20210162110Abstract: Systems and methods for monitoring oxygenator performance in extracorporeal circuit systems or the like. More particularly, the disclosure relates to systems and methods including a controller programmed to determine oxygenator apparatus flow impedance as a function of an inlet pressure measurement, an outlet pressure measurement and a blood flow rate measurement. The systems and methods may include a communication device that receives signals from the controller to communicate information regarding oxygenator apparatus performance.Type: ApplicationFiled: February 11, 2021Publication date: June 3, 2021Applicant: Medtronic Vascular, Inc.Inventors: Brian Steffens, James Beavers, John Knoll, Todd Romine
-
Patent number: 10940257Abstract: Systems and methods for monitoring oxygenator performance in extracorporeal circuit systems or the like. More particularly, the disclosure relates to systems and methods including a controller programmed to determine oxygenator apparatus flow impedance as a function of an inlet pressure measurement, an outlet pressure measurement and a blood flow rate measurement. The systems and methods may include a communication device that receives signals from the controller to communicate information regarding oxygenator apparatus performance.Type: GrantFiled: November 7, 2017Date of Patent: March 9, 2021Assignee: Medtronic Vascular, Inc.Inventors: Brian Steffens, James Beavers, John Knoll, Todd Romine
-
Patent number: 10812693Abstract: Embodiments of the disclosure provide systems and methods for motion capture to generate content (e.g., motion pictures, television programming, videos, etc.). An actor or other performing being can have multiple markers on his or her face that are essentially invisible to the human eye, but that can be clearly captured by camera systems of the present disclosure. Embodiments can capture the performance using two different camera systems, each of which can observe the same performance but capture different images of that performance. For instance, a first camera system can capture the performance within a first light wavelength spectrum (e.g., visible light spectrum), and a second camera system can simultaneously capture the performance in a second light wavelength spectrum different from the first spectrum (e.g., invisible light spectrum such as the IR light spectrum). The images captured by the first and second camera systems can be combined to generate content.Type: GrantFiled: August 13, 2018Date of Patent: October 20, 2020Assignee: LucasFilm Entertainment Company Ltd.Inventors: Leandro Estebecorena, John Knoll, Stephane Grabli, Per Karefelt, Pablo Helman, John M. Levin
-
Publication number: 20200288050Abstract: Embodiments of the disclosure provide systems and methods for motion capture to generate content (e.g., motion pictures, television programming, videos, etc.). An actor or other performing being can have multiple markers on his or her face that are essentially invisible to the human eye, but that can be clearly captured by camera systems of the present disclosure. Embodiments can capture the performance using two different camera systems, each of which can observe the same performance but capture different images of that performance. For instance, a first camera system can capture the performance within a first light wavelength spectrum (e.g., visible light spectrum), and a second camera system can simultaneously capture the performance in a second light wavelength spectrum different from the first spectrum (e.g., invisible light spectrum such as the IR light spectrum). The images captured by the first and second camera systems can be combined to generate content.Type: ApplicationFiled: May 20, 2020Publication date: September 10, 2020Applicant: Lucasfilm Entertainment Company Ltd.Inventors: John Knoll, Leandro Estebecorena, Stephane Grabli, Per Karefelt, Pablo Helman, John M. Levin
-
Patent number: 10701253Abstract: Embodiments of the disclosure provide systems and methods for motion capture to generate content (e.g., motion pictures, television programming, videos, etc.). An actor or other performing being can have multiple markers on his or her face that are essentially invisible to the human eye, but that can be clearly captured by camera systems of the present disclosure. Embodiments can capture the performance using two different camera systems, each of which can observe the same performance but capture different images of that performance. For instance, a first camera system can capture the performance within a first light wavelength spectrum (e.g., visible light spectrum), and a second camera system can simultaneously capture the performance in a second light wavelength spectrum different from the first spectrum (e.g., invisible light spectrum such as the IR light spectrum). The images captured by the first and second camera systems can be combined to generate content.Type: GrantFiled: August 13, 2018Date of Patent: June 30, 2020Assignee: LUCASFILM ENTERTAINMENT COMPANY LTD.Inventors: John Knoll, Leandro Estebecorena, Stephane Grabli, Per Karefelt, Pablo Helman, John M. Levin
-
Publication number: 20190124244Abstract: Embodiments of the disclosure provide systems and methods for motion capture to generate content (e.g., motion pictures, television programming, videos, etc.). An actor or other performing being can have multiple markers on his or her face that are essentially invisible to the human eye, but that can be clearly captured by camera systems of the present disclosure. Embodiments can capture the performance using two different camera systems, each of which can observe the same performance but capture different images of that performance. For instance, a first camera system can capture the performance within a first light wavelength spectrum (e.g., visible light spectrum), and a second camera system can simultaneously capture the performance in a second light wavelength spectrum different from the first spectrum (e.g., invisible light spectrum such as the IR light spectrum). The images captured by the first and second camera systems can be combined to generate content.Type: ApplicationFiled: August 13, 2018Publication date: April 25, 2019Applicant: Lucasfilm Entertainment Company Ltd.Inventors: John Knoll, Leandro Estebecorena, Stephane Grabli, Per Karefelt, Pablo Helman, John M. Levin
-
Publication number: 20190122374Abstract: Embodiments of the disclosure provide systems and methods for motion capture to generate content (e.g., motion pictures, television programming, videos, etc.). An actor or other performing being can have multiple markers on his or her face that are essentially invisible to the human eye, but that can be clearly captured by camera systems of the present disclosure. Embodiments can capture the performance using two different camera systems, each of which can observe the same performance but capture different images of that performance. For instance, a first camera system can capture the performance within a first light wavelength spectrum (e.g., visible light spectrum), and a second camera system can simultaneously capture the performance in a second light wavelength spectrum different from the first spectrum (e.g., invisible light spectrum such as the IR light spectrum). The images captured by the first and second camera systems can be combined to generate content.Type: ApplicationFiled: August 13, 2018Publication date: April 25, 2019Applicant: Lucasfilm Entertainment Company Ltd.Inventors: Leandro Estebecorena, John Knoll, Stephane Grabli, Per Karefelt, Pablo Helman, John M. Levin
-
Publication number: 20180126057Abstract: Systems and methods for monitoring oxygenator performance in extracorporeal circuit systems or the like. More particularly, the disclosure relates to systems and methods including a controller programmed to determine oxygenator apparatus flow impedance as a function of an inlet pressure measurement, an outlet pressure measurement and a blood flow rate measurement. The systems and methods may include a communication device that receives signals from the controller to communicate information regarding oxygenator apparatus performance.Type: ApplicationFiled: November 7, 2017Publication date: May 10, 2018Inventors: Brian Steffens, James Beavers, John Knoll, Todd Romine
-
Patent number: 9734615Abstract: An animation analyzer is configured to receive an animation sequence and to identify a subsample of the frames that are to be rendered. A rendering engine is configured to render the subsample of the frames. The rendering engine is further configured to identify the frames that have not been rendered and to generate in-betweens for the frames that have not been rendered. The rendering engine is further configured to assemble the subsample of frames and the in-betweens into a video sequence depicting the animation sequence.Type: GrantFiled: March 14, 2013Date of Patent: August 15, 2017Assignee: LUCASFILM ENTERTAINMENT COMPANY LTD.Inventors: John Knoll, Victor Schutz, IV, Mark Nettleton
-
Patent number: 9389023Abstract: A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle.Type: GrantFiled: October 25, 2013Date of Patent: July 12, 2016Assignee: Medtronic, Inc.Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
-
Publication number: 20140048234Abstract: A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle.Type: ApplicationFiled: October 25, 2013Publication date: February 20, 2014Applicant: Medtronic, Inc.Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
-
Patent number: 8579845Abstract: A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle.Type: GrantFiled: January 27, 2011Date of Patent: November 12, 2013Assignee: Medtronic, Inc.Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
-
Patent number: 8518259Abstract: An apparatus for de-aering, oxygenating and controlling a temperature of blood in an extracorporeal blood circuit. The apparatus includes a housing, a manifold body, a heat exchanger, and an oxygenator. A blood inlet tangentially directs blood into a first chamber of the housing. The manifold body is disposed in a second chamber, and includes a core and a plurality of vanes that define channels. The heat exchanger is arranged around the manifold body, and the oxygenator around the heat exchanger. The channels are open to the heat exchanger. An established blood flow path includes rotational flow within the first chamber to separate air from the blood, generally longitudinal flow from the first chamber and along the channels, and generally radial flow through the heat exchanger and the oxygenator. With this construction, gross air removal occurs prior to the blood passing through the heat exchanger and oxygenator.Type: GrantFiled: January 27, 2011Date of Patent: August 27, 2013Assignee: Medtronic, Inc.Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
-
Publication number: 20120197363Abstract: A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle.Type: ApplicationFiled: January 27, 2011Publication date: August 2, 2012Applicant: Medtronic, Inc.Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
-
Publication number: 20120193289Abstract: An apparatus for de-aering, oxygenating and controlling a temperature of blood in an extracorporeal blood circuit. The apparatus includes a housing, a manifold body, a heat exchanger, and an oxygenator. A blood inlet tangentially directs blood into a first chamber of the housing. The manifold body is disposed in a second chamber, and includes a core and a plurality of vanes that define channels. The heat exchanger is arranged around the manifold body, and the oxygenator around the heat exchanger. The channels are open to the heat exchanger. An established blood flow path includes rotational flow within the first chamber to separate air from the blood, generally longitudinal flow from the first chamber and along the channels, and generally radial flow through the heat exchanger and the oxygenator. With this construction, gross air removal occurs prior to the blood passing through the heat exchanger and oxygenator.Type: ApplicationFiled: January 27, 2011Publication date: August 2, 2012Applicant: Medtronic, Inc.Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
-
Publication number: 20020079032Abstract: A chemiluminescent device cover (10) having a hollow envelope (12) which has a translucent envelope outer layer (12C) manufactured from a fluorescing material and a perforated envelope inner layer (12D) securely attached to the envelope outer layer (12C). The fluorescing outer layer (12C) functions to receive light emanating through the perforations in the envelope inner layer (12D) from a chemiluminescent within the envelope (12) and re-emanate the light therefrom.Type: ApplicationFiled: December 21, 2000Publication date: June 27, 2002Inventor: Robert John Knoll