Patents by Inventor John Koenitzer

John Koenitzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10373764
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 6, 2019
    Assignee: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Publication number: 20180043437
    Abstract: A method for producing a metal powder that combines molten reducing metal and metal halide in a space that is substantially free of oxygen and water, wherein the molten reducing metal is sodium and/or potassium, or aluminum (or magnesium or titanium) and is present in a stoichiometric excess to the metal halide which is a solid or liquid, thereby producing metal particles and salt, removing unreacted reducing metal, optionally removing the salt, and recovering the metal powder, is described. A method for producing a metal masterbatch wherein the molten reducing metal is aluminum, magnesium, and/or titanium and after combining molten aluminum (or magnesium or titanium) and metal halide in the reaction space, substantially removing the produced metal salt to obtain the metal masterbatch which comprises at least a portion of the molten aluminum (or magnesium or titanium) and at least one metal also is described.
    Type: Application
    Filed: August 7, 2017
    Publication date: February 15, 2018
    Applicant: Nanoscale Powders, LLC
    Inventors: Donald Finnerty, David Henderson, John Koenitzer, Andrew Matheson, Richard Van Lieshout
  • Publication number: 20180047516
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Applicant: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Patent number: 9831041
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: November 28, 2017
    Assignee: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Publication number: 20170209925
    Abstract: The present invention related to a method to make capacitor grade powder. The method includes the use of a spray dryer that includes a rotating atomizer disk to form agglomerated powder and the method further includes a heat treatment step. Capacitor grade powder formed by the methods of the present invention are further described.
    Type: Application
    Filed: August 12, 2014
    Publication date: July 27, 2017
    Applicant: Global Advanced Metals USA, Inc.
    Inventors: Eiji Kataoka, Shuhei Yoshikawa, John Koenitzer
  • Publication number: 20120081840
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Application
    Filed: November 11, 2011
    Publication date: April 5, 2012
    Applicant: CABOT CORPORATION
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Publication number: 20070292613
    Abstract: Methods of making a ternary oxide and a perovskite-related ternary oxide structure are described. The methods include reacting a binary oxide with a metal oxide or a metal hydroxide to form a ternary oxide dielectric layer on a substrate. Powders, anodes, pressed articles, and capacitors including the ternary oxide or perovskite-related ternary oxide structure as a dielectric layer or other layers are further described.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Inventors: Robert Mariani, John Koenitzer
  • Publication number: 20050136292
    Abstract: Methods of making a ternary oxide and a perovskite-related ternary oxide structure are described. The methods include reacting a binary oxide with a metal oxide or a metal hydroxide to form a ternary oxide dielectric layer on a substrate. Powders, anodes, pressed articles, and capacitors including the ternary oxide or perovskite-related ternary oxide structure as a dielectric layer or other layers are further described.
    Type: Application
    Filed: August 10, 2004
    Publication date: June 23, 2005
    Inventors: Robert Mariani, John Koenitzer