Patents by Inventor John Kratochwil

John Kratochwil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9970120
    Abstract: A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: May 15, 2018
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Publication number: 20160130713
    Abstract: A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
    Type: Application
    Filed: January 18, 2016
    Publication date: May 12, 2016
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 9249521
    Abstract: Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 2, 2016
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 8916248
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 23, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Jonathan McCrea, Francisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha
  • Publication number: 20130112563
    Abstract: Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 8394473
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The invention can also be employed as a repair/refurbishment technique. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 12, 2013
    Assignee: Integran Technologies, Inc.
    Inventors: Jonathan McCrea, Francisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha
  • Publication number: 20120321906
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The invention can also be employed as a repair/refurbishment technique. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 20, 2012
    Inventors: Jonathan McCrea, Fracisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha
  • Patent number: 8247050
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The invention can also be employed as a repair/refurbishment technique. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: August 21, 2012
    Assignee: Integran Technologies, Inc.
    Inventors: Jonathan McCrea, Fracisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha
  • Publication number: 20100304063
    Abstract: Metal-coated polymer articles containing structural substantially porosity-free, fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein on polymer substrates, are disclosed. The substantially porosity-free metallic coatings/layers/patches are applied to polymer or polymer composite substrates to provide, enhance or restore vacuum/pressure integrity and fluid sealing functions. Due to the excellent adhesion between the metallic coating and the polymer article satisfactory thermal cycling performance is achieved. The invention can also be employed as a repair/refurbishment technique. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, aerospace and automotive parts and other components exposed to thermal cycling and stress created by erosion and impact damage.
    Type: Application
    Filed: June 2, 2009
    Publication date: December 2, 2010
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Jonathan McCrea, Fracisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Rich Emrich, Konstantinos Panagiotopoulos, Mary Pasquantonio, John Kratochwil, Herath Katugaha