Patents by Inventor John L. Dawson

John L. Dawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100738
    Abstract: This invention relates to tufted floorcovering articles, including carpet tiles and broadloom carpet. In particular, this invention relates to tufted floorcovering articles made from the family of polymers known as polyester. Specifically, this invention relates to tufted carpet tile products made from polyester. The polyester carpet tiles meet commercial performance specifications and are fully end-of-life recyclable.
    Type: Application
    Filed: December 5, 2023
    Publication date: March 28, 2024
    Applicant: Milliken & Company
    Inventors: Dale R. Williams, Joseph Wallen, Ty Grant Dawson, Nils David Sellman, JR., Daniel Taylor McBride, Joseph R. Royer, John L. Sanchez
  • Patent number: 6720488
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: April 13, 2004
    Assignee: Syngenta Investment Corporation
    Inventors: Michael Koziel, Nalini Desai, Gary M. Pace, Jan Suttie, Nadine Carozzi, Cindy Boyce, John L. Dawson, Erik Dunder, Martha Wright, Karen Launis, Steven J. Rothstein, Kelly Lewis, Gregory Warren, Steve Evola
  • Publication number: 20030237117
    Abstract: Methods for transformation of maize with nucleic acid sequences of interest are disclosed. The method involves subjecting immature zygotic embryos or Type I callus to high velocity microprojectile bombardment. The method is capable of producing transformed maize lines of commercial importance and their hybrid combinations.
    Type: Application
    Filed: April 30, 2002
    Publication date: December 25, 2003
    Inventors: Michael Koziel, Nalini Desai, Kelly Lewis, Vance Kramer, Gregory Warren, Steve Evola, Lyle D. Crossland, Martha Wright, Ellis Merlin, Karen Launis, Steven J. Rothstein, Cindy Bowman, John L. Dawson, Erik Dunder, Gary M. Pace, Jan Suttie, Nadine Carozzi, Annick De Framond, James O. Linder, Robert L. Miller, Bruce W. Skillings, Alan W. Mousel, Albert R. Hornbrook, Christopher P. Clucas, Moez R. Meghji, Andreas H. Tanner, Francis E. Cassagne, Gilles Pollini, Terry Ray Colbert, Francis P. Cammack
  • Publication number: 20030046726
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Application
    Filed: November 20, 2001
    Publication date: March 6, 2003
    Inventors: Michael Koziel, Nalini Desai, Kelly Lewis, Gregory Warren, Steve Evola, Martha Wright, Karen Launis, Steven J. Rothstein, Cindy Boyce, John L. Dawson, Erik Dunder, Gary M. Pace, Jan Suttie, Nadine Carozzi
  • Patent number: 6403865
    Abstract: Methods for transformation of maize with nucleic acid sequences of interest are disclosed. The method involves subjecting immature zygotic embryos or Type I callus to high velocity microprojectile bombardment. The method is capable of producing transformed maize lines of commercial importance and their hybrid combinations.
    Type: Grant
    Filed: May 10, 1995
    Date of Patent: June 11, 2002
    Assignee: Syngenta Investment Corp.
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Vance C. Kramer, Gregory W. Warren, Stephen V. Evola, Lyle D. Crossland, Martha S. Wright, Ellis J. Merlin, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie, Nadine Carozzi, Annick De Framond, James O. Linder, Robert L. Miller, Bruce W. Skillings, Alan W. Mousel, Albert R. Hornbrook, Christopher P. Clucas, Moez Rajabali Meghji, Andreas H. Tanner, Francis E. Cassagne, Gilles Pollini, Terry Ray Colbert, Francis P. Cammack
  • Patent number: 6320100
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: April 11, 2000
    Date of Patent: November 20, 2001
    Assignee: Syngenta Investments, Inc.
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6075185
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: June 13, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6051760
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: April 18, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 6018104
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: January 25, 2000
    Assignee: Novartis Finance Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Vance C. Kramer, Gregory W. Warren, Stephen V. Evola, Martha S. Wright, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 5859336
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: January 12, 1999
    Assignee: Novartis Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Gregory W. Warren, Stephen V. Evola, Lyle D. Crossland, Martha S. Wright, Ellis J. Merlin, Karen L. Launis, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 5625136
    Abstract: DNA sequences optimized for expression in plants are disclosed. The DNA sequences preferably encode for an insecticidal polypeptides, particularly insecticidal proteins from Bacillus thuringiensis. Plant promoters, particular tissue-specific and tissue-preferred promoters are also provided. Additionally disclosed are transformation vectors comprising said DNA sequences. The transformation vectors demonstrate high levels of insecticidal activity when transformed into maize.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: April 29, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Michael G. Koziel, Nalini M. Desai, Kelly S. Lewis, Vance C. Kramer, Gregory W. Warren, Stephen V. Evola, Lyle D. Crossland, Martha S. Wright, Ellis J. Merlin, Karen L. Launis, Steven J. Rothstein, Cindy G. Bowman, John L. Dawson, Erik M. Dunder, Gary M. Pace, Janet L. Suttie
  • Patent number: 5425867
    Abstract: A method for producing electrochemical impedance spectra. Spontaneously occuring coupling current noise between an array of electrodes which may be of substantially the same material is detected. A time domain record of the detected current noise is stored and the time domain record of the detected current noise is transformed to the frequency domain. Spontaneously occurring potential noise between the array of electrodes and a further electrode is detected. A time domain record of the detected potential noise is stored and the time domain record of the detected potential noise is transformed to the frequency domain. The frequency domain current noise and potential noise transformations are then transformed to the impedance domain to produce the required electrochemical impedance spectra.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: June 20, 1995
    Assignee: Capcis March Limited
    Inventors: John L. Dawson, David A. Eden, Richard N. Carr
  • Patent number: 5139627
    Abstract: A method and apparatus for detecting and measuring localized corrosion of a metallic surface is described. An array of electrodes fabricated from the same material as the metallic surface is exposed to the same corrosion conditions as the metallic surface. The coupling current between two electrodes of the array is measured, and the electrochemical current noise originating in the electrode array is measured. The two measurements are compared, the electrochemical current noise increasing as compared to the coupling current as the degree to which corrosion is localized increases. The electrochemical current noise originating in the coupled array electrode and the associated electrochemical corrosion potential noise are produced by the natural corrosion processes.
    Type: Grant
    Filed: November 14, 1990
    Date of Patent: August 18, 1992
    Assignee: Capcis Limited
    Inventors: David A. Eden, David G. John, John L. Dawson
  • Patent number: 5030045
    Abstract: A scored wall panel provides shallow grooves to simulate installed wall tile or the like. The shallow grooves are provided with an inner concave wall having a radius of curvature substantially exceeding the thickness of the panel and corners tangentially intersecting the inner wall having a radius of curvature substantially less than the thickness of the panel. The panel thickness varies from one location to another and the grooves are formed so that the variations in thickness of the panel do not cause variations in the width of the grooves. Further, the grooves are sufficiently shallow so that the material of the panel extending past the groove maintains necessary panel strength. The edges of the radiused corners remote from the inner surface of the grooves extend substantially perpendicular to the faces of the panel and are spaced from the rearward face of the panel by a distance substantially equal to the minimum thickness of the panel.
    Type: Grant
    Filed: May 7, 1990
    Date of Patent: July 9, 1991
    Assignee: Commercial & Architectural Products, Inc.
    Inventors: John L. Dawson, David L. Bridges
  • Patent number: 4937992
    Abstract: A scored will panel provides shallow grooves to simulate installed wall tile or the like. The shallow grooves are provided with an inner concave wall having a radius of curvature substantially exceeding the thickness of the panel and corners tangentially intersecting the inner wall having a radius of curvature substantially less than the thickness of the panel. The panel thickness varies from one location to another and the grooves are formed so that the variations in thickness of the panel do not cause variations in the width of the grooves. Further, the grooves are sufficiently shallow so that the material of the panel extending past the groove maintains necessary panel strength. The edges of the radiused corners remote from the inner surface of the grooves extend substantially perpendicular to the faces of the panel and are spaced from the rearward face of the panel by a distance substantially equal to the minimum thickness of the panel.
    Type: Grant
    Filed: June 21, 1989
    Date of Patent: July 3, 1990
    Assignee: Commercial and Architectural Products, Inc.
    Inventors: John L. Dawson, David L. Bridges
  • Patent number: 4233070
    Abstract: A lead alkaline earth metal alloy comprising lead, calcium, barium or strontium or mixtures thereof in an amount of 0.075A/40% to 0.13A/40% by weight where A is the atomic weight of alkaline earth metal 0.005% to 0.05% magnesium and preferably 0.005% to 0.01% aluminium is disclosed and has improved corrosion resistance combined with tensile strength as compared to alloys with magnesium and aluminium contents outside these defined ranges.The alloy is useful for grids in lead acid electric storage batteries.
    Type: Grant
    Filed: May 23, 1979
    Date of Patent: November 11, 1980
    Assignee: Chloride Group Limited
    Inventors: John McWhinnie, John L. Dawson