Patents by Inventor John L. Falconer

John L. Falconer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11918974
    Abstract: Functionalized zeolites, including a zeolite substrate and a self-assembled monolayer of a phosphonic acid on a surface of the zeolite substrate, are disclosed, as are methods of making and using the functionalized zeolites. The disclosed methods and compositions have various applications, including in the use of molecular sieves to separate small-molecule gases from mixtures thereof. Gas adsorption selectivities and diffusion rates of the functionalized zeolites may be tuned or selected according to the disclosed methods.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 5, 2024
    Assignee: The Regents of the University of Colorado
    Inventors: John L. Falconer, James William Medlin, Lucas Delano Ellis, Hans H. Funke, Surya Parker
  • Publication number: 20190329214
    Abstract: Functionalized zeolites, including a zeolite substrate and a self-assembled monolayer of a phosphonic acid on a surface of the zeolite substrate, are disclosed, as are methods of making and using the functionalized zeolites. The disclosed methods and compositions have various applications, including in the use of molecular sieves to separate small-molecule gases from mixtures thereof. Gas adsorption selectivities and diffusion rates of the functionalized zeolites may be tuned or selected according to the disclosed methods.
    Type: Application
    Filed: April 19, 2019
    Publication date: October 31, 2019
    Inventors: John L. Falconer, James William Medlin, Lucas Delano Ellis, Hans H. Funke, Surya Parker
  • Publication number: 20150329963
    Abstract: Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Alan W. Weimer, Xinhua Liang, Jianhua Li, John L. Falconer
  • Patent number: 9090971
    Abstract: Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: July 28, 2015
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Alan W. Weimer, Xinhua Liang, Jianhua Li, John L. Falconer, Miao Yu
  • Publication number: 20140352533
    Abstract: The invention provides methods for making silicoaluminophosphate-34 (SAPO-34) membranes comprising interlocking SAPO-34 crystals. In the methods of the invention, the SAPO-34 membranes are formed through in situ crystallization on a porous support using a synthesis mixture initially including a SAPO-34 forming gel and a plurality of SAPO-34 crystals dispersed in the gel. The invention also provides supported SAPO-34 membranes made by the methods of the invention. The invention also provides methods for separating a first gas component from a gas mixture, the methods comprising the step of providing a membrane of the invention.
    Type: Application
    Filed: January 10, 2013
    Publication date: December 4, 2014
    Inventors: John L. Falconer, Eric W. Ping, Rongfei Zhou, Richard D. Noble, Hans Funke
  • Patent number: 8679227
    Abstract: The present invention provides methods for making improved zeolite and crystalline silicoaluminophosphate (SAPO) membranes, in particular SAPO-34 membranes, on a porous support through improved removal of the organic structure-directing templating agent. A calcining step is performed in an oxygen free atmosphere, such as under a vacuum or inert gas, to remove the organic templating agent. By removing the templating agent in the absence of oxygen, the calcination step can remove a greater amount of the templating agent than comparable template removal steps conducted in the presence of oxygen and the calcination step can be conducted at significantly lower temperatures. The membranes of the present invention provide increased permeance while maintaining comparable selectivity for gas separations, particularly carbon dioxide (CO2) and methane (CH4) separations and separations at high temperatures.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 25, 2014
    Assignee: The Regents of the University of Colorado
    Inventors: John L. Falconer, Richard D. Noble, Begum Tokay, Yanfeng Zhang
  • Patent number: 8409326
    Abstract: SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel. The Si/Al ratio of the synthesis gel can be from 0.3 to 0.15. SAPO-34 crystals are optionally applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 crystals may also form in the pores of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: April 2, 2013
    Assignee: The Regents of the University of Colorado
    Inventors: Shiguang Li, John L. Falconer, Richard D. Noble
  • Patent number: 8302782
    Abstract: SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel comprising a first and a second templating agent. SAPO-34 crystals having a narrow size distribution were applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: November 6, 2012
    Assignee: The Regents of the University of Colorado, a body corporated
    Inventors: John L. Falconer, Moises A. Carreon, Shiguang Li, Richard D. Noble
  • Publication number: 20120201860
    Abstract: Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
    Type: Application
    Filed: May 11, 2010
    Publication date: August 9, 2012
    Inventors: Alan W. Weimer, Xinhua Liang, Jianhua Li, John L. Falconer, Miao Yu
  • Publication number: 20120006194
    Abstract: The present invention provides methods for making improved zeolite and crystalline silicoaluminophosphate (SAPO) membranes, in particular SAPO-34 membranes, on a porous support through improved removal of the organic structure-directing templating agent. A calcining step is performed in an oxygen free atmosphere, such as under a vacuum or inert gas, to remove the organic templating agent. By removing the templating agent in the absence of oxygen, the calcination step can remove a greater amount of the templating agent than comparable template removal steps conducted in the presence of oxygen and the calcination step can be conducted at significantly lower temperatures. The membranes of the present invention provide increased permeance while maintaining comparable selectivity for gas separations, particularly carbon dioxide (CO2) and methane (CH4) separations and separations at high temperatures.
    Type: Application
    Filed: April 28, 2011
    Publication date: January 12, 2012
    Applicant: The Regents of the University of Colorado, a body corporate
    Inventors: John L. Falconer, Richard D. Noble, Begum Tokay, Yanfeng Zhang
  • Patent number: 8067327
    Abstract: The present invention provides modified molecular sieve membranes with improved CO2/CH4 separation selectivity and methods for making such membranes. The molecular sieve membranes are modified by adsorption of a modifying agent, such as ammonia, within and/or on the membrane.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 29, 2011
    Assignee: The Regents of the University of Colorado, a body corporate
    Inventors: Shiguang Li, Sara A. Arvidson, John L. Falconer, Richard D. Noble
  • Publication number: 20110284063
    Abstract: A dye-sensitized solar cell (DSSC) is provided. The DSSC anode includes a first electron-collecting layer deposited on a substrate and a first electron-transporting layer deposited on the first electron-collecting layer, the first electron-transporting layer containing light-absorbing dye. The DSSC anode also includes a second nanoporous electron-collecting layer deposited on the first electron-transporting layer; and a second electron-transporting layer deposited on the second porous electron-collecting layer, the second electron-transporting layer containing light-absorbing dye. Methods of fabricating the DSSC anode are also provided.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Inventors: Miao Yu, Wei Zhang, John L. Falconer, Richard D. Noble
  • Patent number: 7828875
    Abstract: The present invention provides modified molecular sieve membranes with improved CO2/CH4 separation selectivity and methods for making such membranes. The molecular sieve membranes are modified by adsorption of a modifying agent, such as ammonia, within and/or on the membrane.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: November 9, 2010
    Assignee: The Regents of the University of Colorado
    Inventors: Shiguang Li, Sara A. Arvidson, John L. Falconer, Richard D. Noble
  • Publication number: 20100102001
    Abstract: The invention provides chemically activated valves based on crystalline molecular sieve membranes. Adsorption of a swelling agent within the pores of the molecular sieve crystals limits transport through the membrane. Desorption of the swelling agent can re-establish transport through the membrane. This valving mechanism can be used in methods for storing and dispensing various substances.
    Type: Application
    Filed: February 29, 2008
    Publication date: April 29, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF COLORADO, A BODY
    Inventors: John L. Falconer, Richard D. Noble, Miao Yu
  • Publication number: 20080216650
    Abstract: SAPO-34 membranes and methods for their preparation and use are described. The SAPO-34 membranes are prepared by contacting at least one surface of a porous membrane support with a synthesis gel comprising a first and a second templating agent. SAPO-34 crystals having a narrow size distribution were applied to the surface of the support prior to synthesis. A layer of SAPO-34 crystals is formed on at least one surface of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 11, 2008
    Applicant: The Regents of the University of Colorado, a Body Corporate
    Inventors: John L. Falconer, Moises A. Carreon, Shiguang Li, Richard D. Noble
  • Patent number: 7316727
    Abstract: SAPO membranes and methods for their preparation and use are described. The SAPO membranes are prepared by contacting at least one surface of a porous membrane support with an aged synthesis gel. A layer of SAPO crystals is formed on at least one surface of the support. SAPO crystals may also form in the pores of the support. SAPO-34 membranes of the invention can have improved selectivity for certain gas mixtures, including mixtures of carbon dioxide and methane.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: January 8, 2008
    Assignee: The Regents of The University of Colorado
    Inventors: John L. Falconer, Shiguang Li, Richard D. Noble
  • Patent number: 7074734
    Abstract: Zeolite membranes that can be used to continuously separate components of mixtures are disclosed. The zeolite membranes are prepared by isomorphous substitution, which allows systematic modification of the zeolite surface and pore structure. Through proper selection of the basic zeolite framework structure and compensating cations, isomorphous substitution permits high separation selectivity without many of the problems associated with zeolite post-synthesis treatments. The inventive method for preparing zeolite membranes is alkali-free and is much simpler than prior methods for making acid hydrogen zeolite membranes, which can be used as catalysts in membrane reactors.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: July 11, 2006
    Assignee: The Regents of The University of Colorado, a body corporate
    Inventors: Tuan Anh Vu, Richard D. Noble, John L. Falconer
  • Publication number: 20040235498
    Abstract: Zeolite membranes that can be used to continuously separate components of mixtures are disclosed. The zeolite membranes are prepared by isomorphous substitution, which allows systematic modification of the zeolite surface and pore structure. Through proper selection of the basic zeolite framework structure and compensating cations, isomorphous substitution permits high separation selectivity without many of the problems associated with zeolite post-synthesis treatments. The inventive method for preparing zeolite membranes is alkali-free and is much simpler than prior methods for making acid hydrogen zeolite membranes, which can be used as catalysts in membrane reactors.
    Type: Application
    Filed: June 15, 2004
    Publication date: November 25, 2004
    Inventors: Tuan Anh Vu, Richard D. Noble, John L. Falconer
  • Patent number: 6767384
    Abstract: Zeolite membranes that can be used to continuously separate components of mixtures are disclosed. The zeolite membranes are prepared by isomorphous substitution, which allows systematic modification of the zeolite surface and pore structure. Through proper selection of the basic zeolite framework structure and compensating cations, isomorphous substitution permits high separation selectivity without many of the problems associated with zeolite post-synthesis treatments. The inventive method for preparing zeolite membranes is alkali-free and is much simpler than prior methods for making acid hydrogen zeolite membranes, which can be used as catalysts in membrane reactors.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: July 27, 2004
    Assignee: The Regents of the University of Colorado
    Inventors: Tuan Anh Vu, Richard D. Noble, John L. Falconer
  • Patent number: 6051517
    Abstract: A modified zeolite or molecular sieve membrane for separation of materials on a molecular scale. The modified membrane is fabricated to wholly or partially block regions between zeolite crystals to inhibit transfer of larger molecules through the membrane, but without blocking or substantially inhibiting transfer of small molecules through pores in the crystalline structure. The modified membrane has a monomolecular layer deposited on the zeolite surface which has coordinated groups of atoms that include (i) a metal atom bonded to oxygen atoms that are bonded to the zeolite substrate atoms (e.g., silicon atoms) and (ii) either hydroxyl groups bonded to the metal atoms or additional oxygen atoms bonded to the metal atoms.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: April 18, 2000
    Assignee: University Technology Corp.
    Inventors: Hans H. Funke, Jason W. Klaus, Steven M. George, Andrew W. Ott, John L. Falconer, Richard D. Noble