Patents by Inventor John L. Kubis

John L. Kubis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9315396
    Abstract: Synergies in recovery of reverse osmosis (RO) membrane process reject waste and forward osmosis (FO) membrane process water extraction, using such osmotic process byproducts in applications for makeup to evaporative cooling towers, concurrent with use of specific corrosion and scale inhibition methods that permit tower water discharge reduction to approach zero blowdown. Such synergies are derived from methods for application of subsequent RO feed water and reject wastewater with pre-treatment steps, and FO process optimization steps to permit water quality and economic performance efficiencies when used as makeup to evaporative cooling systems.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 19, 2016
    Assignee: Water Conservation Technology International, Inc.
    Inventors: Dan A. Duke, John L. Kubis
  • Publication number: 20120255908
    Abstract: Synergies in recovery of reverse osmosis (RO) membrane process reject waste and forward osmosis (FO) membrane process water extraction, using such osmotic process byproducts in applications for makeup to evaporative cooling towers, concurrent with use of specific corrosion and scale inhibition methods that permit tower water discharge reduction to approach zero blowdown. Such synergies are derived from methods for application of subsequent RO feed water and reject wastewater with pre-treatment steps, and FO process optimization steps to permit water quality and economic performance efficiencies when used as makeup to evaporative cooling systems.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 11, 2012
    Applicant: WATER CONSERVATION TECHNOLOGY INTERNATIONAL, INC.
    Inventors: DAN A. DUKE, JOHN L. KUBIS
  • Patent number: 8057738
    Abstract: Methods for inhibiting corrosion in aqueous evaporative systems where soluble silica (SiO2) is maintained at residuals between 10 Mg/L and saturation, but more preferably maintained at greater than 300 mg/L as SiO2, to provide corrosion inhibiting silica films that protect system metals. Silica is provided by evaporation of water and subsequent concentration and transformation of silica naturally contained in source water. The methods of the present invention provide highly effective inhibition of corrosion for mild steel, copper, stainless steel, aluminum, zinc, galvanized steel and various alloys of such metals. The methods of the present invention comprise pretreatment removal of polyvalent metal ions from the makeup source water, maintenance of concentration of monovalent metal ions, and controlling pH at a minimum of 7.0 in the presence of an elevated temperature aqueous environment.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: November 15, 2011
    Assignee: Water Conservation Technology International, Inc.
    Inventors: Dan A. Duke, John L. Kubis
  • Patent number: 7955553
    Abstract: A method of providing corrosion inhibition to copper, nickel, aluminum, zinc, tin, lead, beryllium, carbon steel, various alloys of such metals, and galvanized coatings in evaporative cooling water applications approaching zero liquid discharge that are specifically attacked by cooling water with residuals of corrosive chemistry or ions such as ammonia/ammonium ion, chloride, high TDS, OH?, or high pH. The method includes applying azoles inhibitors (such as TTA, BTA, etc.) at residuals of 0.25 mg/L to 200 mg/L or greater (as azoles) to the cooling water application and operating with a combination of high TDS (greater than 2500 mg/L) and high pH (greater than 9.0), while maintaining low total hardness (less than 200 mg/L as CaCO3).
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: June 7, 2011
    Inventors: Dan A. Duke, John L. Kubis
  • Publication number: 20100173071
    Abstract: A method of providing corrosion inhibition to copper, nickel, aluminum, zinc, tin, lead, beryllium, carbon steel, various alloys of such metals, and galvanized coatings in evaporative cooling water applications approaching zero liquid discharge that are specifically attacked by cooling water with residuals of corrosive chemistry or ions such as ammonia/ammonium ion, chloride, high TDS, OH?, or high pH. The method includes applying azoles inhibitors (such as TTA, BTA, etc.) at residuals of 0.25 mg/L to 200 mg/L or greater (as azoles) to the cooling water application and operating with a combination of high TDS (greater than 2500 mg/L) and high pH (greater than 9.0), while maintaining low total hardness (less than 200 mg/L as CaCO3).
    Type: Application
    Filed: March 24, 2010
    Publication date: July 8, 2010
    Inventors: DAN A. DUKE, JOHN L. KUBIS
  • Patent number: 7708939
    Abstract: A method of providing corrosion inhibition to copper, nickel, aluminum, zinc, tin, lead, beryllium, carbon steel, various alloys of such metals, and galvanized coatings in evaporative cooling water applications approaching zero liquid discharge that are specifically attacked by cooling water with residuals of corrosive chemistry or ions such as ammonia/ammonium ion, chloride, high TDS, OH?, or high pH. The method includes applying azoles inhibitors (such as TTA, BTA, etc.) at residuals of 0.25 mg/L to 200 mg/L or greater (as azoles) to the cooling water application and operating with a combination of high TDS (greater than 2500 mg/L) and high pH (greater than 9.0), while maintaining low total hardness (less than 200 mg/L as CaCO3).
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 4, 2010
    Assignee: Water Conservation Technology International, Inc.
    Inventors: Dan A. Duke, John L. Kubis
  • Publication number: 20090159420
    Abstract: Methods for inhibiting corrosion in aqueous evaporative systems where soluble silica (SiO2) is maintained at residuals between 10 Mg/L and saturation, but more preferably maintained at greater than 300 mg/L as SiO2, to provide corrosion inhibiting silica films that protect system metals. Silica is provided by evaporation of water and subsequent concentration and transformation of silica naturally contained in source water. The methods of the present invention provide highly effective inhibition of corrosion for mild steel, copper, stainless steel, aluminum, zinc, galvanized steel and various alloys of such metals. The methods of the present invention comprise pretreatment removal of polyvalent metal ions from the makeup source water, maintenance of concentration of monovalent metal ions, and controlling pH at a minimum of 7.0 in the presence of an elevated temperature aqueous environment.
    Type: Application
    Filed: February 18, 2009
    Publication date: June 25, 2009
    Inventors: Dan A. Duke, John L. Kubis
  • Patent number: 7517493
    Abstract: Methods for inhibiting corrosion in aqueous evaporative systems where soluble silica (SiO2) is maintained at residuals between 10 Mg/L and saturation, but more preferably maintained at greater than 300 mg/L as SiO2, to provide corrosion inhibiting silica films that protect system metals. Silica is provided by evaporation of water and subsequent concentration and transformation of silica naturally contained in source water. The methods of the present invention provide highly effective inhibition of corrosion for mild steel, copper, stainless steel, aluminum, zinc, galvanized steel and various alloys of such metals. The methods of the present invention comprise pretreatment removal of polyvalent metal ions from the makeup source water, maintenance of concentration of monovalent metal ions, and controlling pH at a minimum of 7.0 in the presence of an elevated temperature aqueous environment.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 14, 2009
    Inventors: Dan A. Duke, John L. Kubis
  • Publication number: 20080264870
    Abstract: A method of providing corrosion inhibition to copper, nickel, aluminum, zinc, tin, lead, beryllium, carbon steel, various alloys of such metals, and galvanized coatings in evaporative cooling water applications approaching zero liquid discharge that are specifically attacked by cooling water with residuals of corrosive chemistry or ions such as ammonia/ammonium ion, chloride, high TDS, OH?, or high pH. The method includes applying azoles inhibitors (such as TTA, BTA, etc.) at residuals of 0.25 mg/L to 200 mg/L or greater (as azoles) to the cooling water application and operating with a combination of high TDS (greater than 2500 mg/L) and high pH (greater than 9.0), while maintaining low total hardness (less than 200 mg/L as CaCO3).
    Type: Application
    Filed: April 24, 2007
    Publication date: October 30, 2008
    Inventors: Dan A. Duke, John L. Kubis
  • Patent number: 7122148
    Abstract: A methods of the present invention for inhibiting silica scale formation and corrosion in aqueous systems where soluble silica residuals (SiO2) are maintained in excess of 200 mg/L, and source water silica deposition is inhibited with silica accumulations as high as 4000 mg/L (cycled accumulation) from evaporation and concentration of source water. The methods of the present invention also provides inhibition of corrosion for carbon steel at corrosion rates of less than 0.3 mpy (mils per year), and less than 0.1 mpy for copper, copper alloy, and stainless steel alloys in highly concentrated (high dissolved solids) waters. The methods of the present invention comprise pretreatment removal of hardness ions from the makeup source water, maintenance of electrical conductivity, and elevating the pH level of the aqueous environment. Thereafter, specified water chemistry residual ranges are maintained in the aqueous system to achieve inhibition of scale and corrosion.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: October 17, 2006
    Assignee: Water Conservation Technologies International
    Inventors: Dan A. Duke, John L. Kubis, John P. Wetherell
  • Patent number: 6998092
    Abstract: A methods for inhibiting silica scale formation and corrosion in aqueous systems where soluble silica (SiO2) can be maintained at residuals below 200 mg/L, but more preferably maintained at greater than 200 mg/L as SiO2, without silica scale and with control of deposition of source water silica accumulations as high as 4000 mg/L (cycled accumulation) from evaporation and concentration of source water. The methods of the present invention also provide highly effective inhibition of corrosion for carbon steel, copper, copper alloy, and stainless steel alloys. The methods of the present invention comprise pretreatment removal of hardness ions from the makeup source water, maintenance of electrical conductivity, and elevating the pH level of the aqueous environment. Thereafter, specified water chemistry residual ranges are maintained in the aqueous system to achieve inhibition of scale and corrosion.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: February 14, 2006
    Assignee: Water Conservation Technologies International
    Inventors: Dan A. Duke, John L. Kubis
  • Patent number: 6949193
    Abstract: A methods for inhibiting silica scale formation and corrosion in aqueous systems where soluble silica (SiO2) can be maintained at residuals below 200 mg/L, but more preferably maintained at greater than 200 mg/L as SiO2, without silica scale and with control of deposition of source water silica accumulations as high as 4000 mg/L (cycled accumulation) from evaporation and concentration of source water. The methods of the present invention also provide highly effective inhibition of corrosion for carbon steel, copper, copper alloy, and stainless steel alloys. The methods of the present invention comprise pretreatment removal of hardness ions from the makeup source water, maintenance of electrical conductivity, and elevating the pH level of the aqueous environment. Thereafter, specified water chemistry residual ranges are maintained in the aqueous system to achieve inhibition of scale and corrosion.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: September 27, 2005
    Assignee: Water & Enviro Tech Company, Inc.
    Inventors: Dan A. Duke, John L. Kubis
  • Patent number: 6929749
    Abstract: A methods of the present invention for inhibiting silica scale formation and corrosion in aqueous systems where soluble silica residuals (SiO2) are maintained in excess of 200 mg/L, and source water silica deposition is inhibited with silica accumulations as high as 4000 mg/L (cycled accumulation) from evaporation and concentration of source water. The methods of the present invention also provides inhibition of corrosion for carbon steel at corrosion rates of less than 0.3 mpy (mils per year), and less than 0.1 mpy for copper, copper alloy, and stainless steel alloys in highly concentrated (high dissolved solids) waters. The methods of the present invention comprise pretreatment removal of hardness ions from the makeup source water, maintenance of electrical conductivity, and elevating the pH level of the aqueous environment. Thereafter, specified water chemistry residual ranges are maintained in the aqueous system to achieve inhibition of scale and corrosion.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: August 16, 2005
    Assignee: Water & Enviro Tech Company, Inc.
    Inventors: Dan A. Duke, John L. Kubis, John P. Wetherell