Patents by Inventor John L. Lahti

John L. Lahti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8014938
    Abstract: A module that calculates power loss for an internal combustion engine includes an air intake calculation module that determines a final air per cylinder (APC) value. A fuel mass rate calculation module that determines a fuel mass rate value based on the final APC value. A power loss calculation module that determines a power loss value for the internal combustion engine based on the fuel mass rate value.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: September 6, 2011
    Inventors: Michael Livshiz, John P. Blanchard, John L. Lahti, Anthony H. Heap
  • Patent number: 8010247
    Abstract: An engine and an electric machine are operative to communicate tractive power with a transmission device to control output power to an output member. The electric machine is electrically coupled to an energy storage device. A method for controlling the engine and electric machine includes monitoring an operator request for power, monitoring a state of charge of the energy storage device, determining an operating cost for each of a plurality of candidate engine operating points based on the operator request for power and the state of charge of the energy storage device; and operating the engine at the candidate engine operating point having a preferred operating cost.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: August 30, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, John L. Lahti, Anthony James Corsetti
  • Publication number: 20110144837
    Abstract: A method of controlling a hybrid powertrain of a vehicle includes lowering a target voltage set point of a low voltage battery to a temporary voltage set point to reduce the overall power required by the accessory power module when a requested voltage from a vehicle accessory draws the voltage of the low voltage battery below the target voltage set point. The temporary voltage set point gradually increases over time until equal to the target voltage set point, allowing sufficient time for a high voltage battery to provide the required power for the accessory power module or for an electric motor/generator to generate the current required by the accessory power module.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 16, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Adam J. Heisel, John L. Lahti, Anthony H. Heap
  • Publication number: 20110130903
    Abstract: A method controls a motor generator unit (MGU) aboard a vehicle. An event signal is generated using a transmission controller, with the event signal predicting a transient vehicle event, e.g., auto start, transmission shift, fuel cycling, etc. The event signal is received by a motor controller, which determines a predicted level of motor output torque required from the MGU during the transient vehicle. Electromagnetic flux of the MGU is increased to a calibrated threshold level prior to commencement of the transient vehicle event. The MGU may be used for regenerating energy during the transient vehicle event. The MGU is then used to facilitate execution of the transient vehicle event. A vehicle having the MGU uses a controller(s) to automatically increase electromagnetic flux of the MGU prior to the transient vehicle event using the method as noted above.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Adam J. Heisel, William R. Cawthorne, Sean W. McGrogan, John L. Lahti
  • Publication number: 20110130902
    Abstract: A method of output torque smoothing for a hybrid powertrain having an electric machine and a spark ignition engine with a first cylinder and a second cylinder includes commanding a fuel-cut transition, including consecutively initiating and completing deactivation of the first cylinder and initiating and completing deactivation of the second cylinder. The fuel-cut transition is characterized by an absence of retarding spark to the first cylinder and second cylinder. Fuel is supplied to the first cylinder until the first cylinder completes deactivation and to the second cylinder until the second cylinder completes deactivation. The electric machine captures a first torque from the first cylinder by generating electricity until the first cylinder completes deactivation and captures a second torque from the second cylinder by generating electricity until the second cylinder completes deactivation.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Adam J. Heisel, Christopher E. Whitney, John L. Lahti, Lan Wang, Goro Tamai
  • Publication number: 20110088658
    Abstract: A method for optimizing an engine idle speed in a vehicle having an engine, a motor generator unit (MGU), and an energy storage system (ESS) includes determining vehicle operating values, including at least one of: an electrical load of an accessory, a torque capacity of the MGU, a temperature of the MGU, an efficiency of the MGU, and a state of charge (SOC) of the ESS. The method also includes calculating a set of engine speed values using the set of vehicle operating values, and using a controller to command the engine idle speed as a function of the set of engine speed values. A vehicle includes an engine, an ESS, an MGU, and a controller having an algorithm adapted for optimizing an idle speed of the engine as set forth above.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Donald Chan, William L. Aldrich, III, John L. Lahti, Birendra P. Bhattarai, Krunal P. Patel, Ning Jin
  • Patent number: 7856309
    Abstract: A cold-start control system for an internal combustion engine includes a heat estimation module, a torque request module and a propulsion torque determination module. The heat estimation module determines an exhaust system temperature and estimates heat required to heat an exhaust system to a predetermined temperature. The torque request module generates a torque request based on the estimated heat. The propulsion torque determination module determines a desired engine torque based on the torque request.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: December 21, 2010
    Inventors: Christopher A Gillanders, John L. Lahti, Louis A. Avallone, Jon C. Miller, Robert C. Simon, Jr., Todd R. Shupe, Jaehak Jung, William R. Cawthorne, Leonard G. Wozniak
  • Publication number: 20100075802
    Abstract: A cold-start control system for an internal combustion engine includes a heat estimation module, a torque request module and a propulsion torque determination module. The heat estimation module determines an exhaust system temperature and estimates heat required to heat an exhaust system to a predetermined temperature. The torque request module generates a torque request based on the estimated heat. The propulsion torque determination module determines a desired engine torque based on the torque request.
    Type: Application
    Filed: September 19, 2008
    Publication date: March 25, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher A. Gillanders, John L. Lahti, Louis A. Avallone, Jon C. Miller, Robert C. Simon, JR., Todd R. Shupe, Jaehak Jung, William R. Cawthorne, Leonard G. Wozniak
  • Publication number: 20100038158
    Abstract: A control system for an engine includes an engine control module (ECM) that operates in a first mode and a second mode. The ECM generates an idle speed signal and a transmission load signal that is based on an idle speed of the engine. The hybrid control module (HCM) increases electric motor torque to increase a current speed of the engine based on the idle speed signal and the transmission load signal. The HCM controls the current speed when in the first mode. The ECM controls the current speed when in the second mode. The HCM transfers control of the current speed to the ECM when at least one of the current speed matches the idle speed and a combustion torque output of the engine is equal to a requested crankshaft output torque.
    Type: Application
    Filed: January 13, 2009
    Publication date: February 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Christopher E. Whitney, Steven G. Bryde, R. Travis Schwenke, John L. Lahti, Ning Jin, Birendra P. Bhattarai, Cheryl A. Williams, James B Nicholson
  • Patent number: 7630826
    Abstract: A diagnostic cold start emissions control system for an internal combustion engine includes a control module having a calculated engine-out energy module, an engine-out energy residual module, and a diagnostic system evaluation module. The calculated engine-out energy module is in communication with the engine-out energy residual module and is configured to determine an operating engine-out energy flow based on an operating engine torque. The engine-out energy residual module is in communication with the diagnostic system evaluation module and is configured to determine an engine-out energy residual based on the determined engine-out energy flow and an expected engine-out energy flow. The diagnostic system evaluation module is configured to determine whether the determined engine-out energy residual meets a predetermined value indicative of proper cold start emissions control.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: December 8, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Wenbo Wang, John L. Lahti, Christopher A Gillanders, Robert J. Genslak, John F. Van Gilder
  • Patent number: 7610800
    Abstract: A method for collecting crankshaft position data includes rotating a crankshaft of an engine within a selected angular velocity range without any fuel being applied to the engine and measuring crankshaft position data.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: November 3, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Xuan Dung T. Avallone, John L. Lahti, David S. Mathews, Robert C. Simon, Jr., Leonard G. Wozniak, William R. Cawthorne, Robert S Wickman
  • Publication number: 20090204280
    Abstract: A hybrid controller for controlling a hybrid vehicle is set forth. The hybrid vehicle has an engine, an electric motor and an engine controller determining a crankshaft torque. The hybrid controller includes an optimization module determining an electric motor torque, determining an engine torque and communicating the engine torque from the hybrid controller to the engine controller. The hybrid controller also includes a motor control module controlling the electric motor based on the electric motor torque.
    Type: Application
    Filed: January 19, 2009
    Publication date: August 13, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Robert C. Simon, JR., Christopher E. Whitney, William R. Cawthorne, John L. Lahti, Douglas J. Babcock, Vivek Mehta, Anthony H. Heap, Todd R. Shupe, Cheryl A. Williams, Leonard G. Wozniak, Ning Jin, Birendra P. Bhattarai, James L. Worthing
  • Publication number: 20090118883
    Abstract: An engine and an electric machine are operative to communicate tractive power with a transmission device to control output power to an output member. The electric machine is electrically coupled to an energy storage device. A method for controlling the engine and electric machine includes monitoring an operator request for power, monitoring a state of charge of the energy storage device, determining an operating cost for each of a plurality of candidate engine operating points based on the operator request for power and the state of charge of the energy storage device; and operating the engine at the candidate engine operating point having a preferred operating cost.
    Type: Application
    Filed: October 16, 2008
    Publication date: May 7, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Anthony H. Heap, John L. Lahti, Anthony James Corsetti
  • Publication number: 20090118090
    Abstract: An internal combustion engine is connected to a transmission to transmit tractive power to a driveline. Engine coolant temperature is determined, and power output of the engine is adjusted based upon the coolant temperature and preferred coolant temperature range. The transmission is controlled to transmit tractive power to the driveline to meet an operator torque request based upon the adjusted power output of the engine.
    Type: Application
    Filed: September 19, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, John L. Lahti
  • Publication number: 20090118969
    Abstract: An internal combustion engine is controlled to achieve a preferred temperature of the exhaust aftertreatment system and to minimize a total engine energy loss. A transmission is controlled to achieve a torque output based upon the preferred engine operation.
    Type: Application
    Filed: September 19, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, John L. Lahti
  • Publication number: 20090118091
    Abstract: An internal combustion engine is fluidly connected to an exhaust aftertreatment system and operatively connected to an electro-mechanical transmission to transmit tractive power to a driveline. The engine is controlled during an engine operating cycle by determining a temperature of the exhaust aftertreatment system and adjusting power output of the engine based upon the temperature of the exhaust aftertreatment system and a preferred temperature range of the exhaust aftertreatment system. The electro-mechanical transmission is controlled to transmit tractive power to the driveline to meet an operator torque request based upon the adjusted power output of the engine.
    Type: Application
    Filed: September 19, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: John L. Lahti, Anthony H. Heap
  • Publication number: 20090056429
    Abstract: A method for collecting crankshaft position data includes rotating a crankshaft of an engine within a selected angular velocity range without any fuel being applied to the engine and measuring crankshaft position data.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 5, 2009
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Xuan Dung Avallone, John L. Lahti, David S. Mathews, Robert C. Simon, JR., Leonard G. Wozniak, William R. Cawthorne, Robert S. Wickman
  • Patent number: 7493206
    Abstract: There is provided a method and an article of manufacture comprising a storage medium having machine-executable code stored therein for estimating a power loss for an internal combustion engine at a point in time. The code includes code to determine engine operating conditions. A nominal power loss is determined based upon an engine operating point. A power loss correction to the nominal power loss is determined based upon barometric pressure, engine temperature, air/fuel ratio, and catalyst temperature. The power loss correction is determinable for: an engine air/fuel ratio mode, an engine cylinder activation mode, and, an engine operating temperature mode.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 17, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: John L. Lahti, Anthony H. Heap
  • Patent number: 7487030
    Abstract: There is provided a method and an apparatus to minimize energy loss of an internal combustion engine during engine warm-up. This includes monitoring engine operating conditions, and estimating a future energy loss. A power loss and a rate of change in the estimated future energy loss are determined. An engine control scheme effective to minimize the power loss and the rate of change in the estimated future energy loss is executed during the engine warm-up.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 3, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Anthony H. Heap, John L. Lahti
  • Publication number: 20080262694
    Abstract: There is provided a method and an apparatus to minimize energy loss of an internal combustion engine during engine warm-up. This includes monitoring engine operating conditions, and estimating a future energy loss. A power loss and a rate of change in the estimated future energy loss are determined. An engine control scheme effective to minimize the power loss and the rate of change in the estimated future energy loss is executed during the engine warm-up.
    Type: Application
    Filed: April 19, 2007
    Publication date: October 23, 2008
    Inventors: Anthony H. Heap, John L. Lahti