Patents by Inventor John L. Margrave

John L. Margrave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040258603
    Abstract: This invention is directed to the fluorination (or derivatization with alternative chemical species) of fullerene carbon nanocages as an efficient way to (a) facilitate synthesis of endohedral complexes by a significant reduction or elimination of the barriers for the entry of guest-ions, -atoms or molecules, and (b) to preserve the chemical stability of final product.
    Type: Application
    Filed: November 19, 2003
    Publication date: December 23, 2004
    Applicant: William Marsh Rice University
    Inventors: Boris I. Yakobson, Pavel V. Avramov, John L. Margrave, Edward T. Mickelson, Robert H. Hauge, Peter J. Boul, Chad B. Huffman, Richard E. Smalley
  • Patent number: 6827918
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: December 7, 2004
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20040223900
    Abstract: A method for functionalizing the wall of single-wall or multi-wall carbon nanotubes involves the use of acyl peroxides to generate carbon-centered free radicals. The method allows for the chemical attachment of a variety of functional groups to the wall or end cap of carbon nanotubes through covalent carbon bonds without destroying the wall or endcap structure of the nanotube. Carbon-centered radicals generated from acyl peroxides can have terminal functional groups that provide sites for further reaction with other compounds. Organic groups with terminal carboxylic acid functionality can be converted to an acyl chloride and further reacted with an amine to form an amide or with a diamine to form an amide with terminal amine. The reactive functional groups attached to the nanotubes provide improved solvent dispersibility and provide reaction sites for monomers for incorporation in polymer structures. The nanotubes can also be functionalized by generating free radicals from organic sulfoxides.
    Type: Application
    Filed: November 14, 2003
    Publication date: November 11, 2004
    Applicant: William Marsh Rice University
    Inventors: Valery N. Khabashesku, Haiqing Peng, John L. Margrave, Mary Lou Margrave, Wilbur Edward Billups, Yunming Ying
  • Publication number: 20040064004
    Abstract: The present invention is directed towards the fluorination of polymeric C60 and towards the chemical and physical modifications of polymeric C60 that can be accomplished through fluorination.
    Type: Application
    Filed: April 8, 2003
    Publication date: April 1, 2004
    Applicants: William Marsh Rice University, Institute for High Pressure Physics
    Inventors: John L. Margrave, Valery N. Khabashesku, Zhenning Gu, Valery Aleksandrovich Davydov, Aleksandra Viktorovna Rakhmanina, Lyudmila Stepanovna Kashevarova
  • Publication number: 20040009114
    Abstract: A method for cutting single-wall carbon nanotubes involves partially fluorinating single-wall carbon nanotubes and pyrolyzing the partially fluorinated nanotubes in an inert atmosphere or vacuum up to about 1000° C. The nanotubes are optionally purified before cutting. The partial fluorination involves fluorinating the nanotubes to a carbon-fluorine stoichiometry of CFx, where x is up to about 0.3. The invention also relates to the derivatization of fluorinated and cut single-wall carbon nanotubes. The single-wall carbon nanotubes can be cut to any length depending on the fluorination and pyrolysis conditions. Short nanotubes are useful in various applications, such as field emitters for flat panel displays and as “seeds” for further nanotube growth.
    Type: Application
    Filed: April 8, 2003
    Publication date: January 15, 2004
    Applicant: William Marsh Rice University
    Inventors: John L. Margrave, Zhenning Gu, Robert H. Hauge, Richard E. Smalley
  • Patent number: 6645455
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: November 11, 2003
    Assignee: William Marsh Rice University
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20020110513
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: August 15, 2002
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hague, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 6428762
    Abstract: Carbon nitride powder prepared by solid-state reaction between cyanuric chloride or its fluoro analogue and lithium nitride. The determined, by elemental analysis, atomic N/C ratio (1.33) in the synthesized material is consistent with C3N4 stoichiometry. Combined material characterization data, obtained by FTIR, Raman, UV-Vis, (13C) MAS NMR, XPS, TGA/DTA and pyrolysis-EIMS methods, provide substantial evidence for graphite-like sp2-bonded structure composed of building blocks of s-triazine rings bridged by the three-fold coordinated nitrogen atoms in the bulk carbon nitride.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: August 6, 2002
    Assignee: William Marsh Rice University
    Inventors: Valery N. Khabashesku, John L. Margrave, John L. Zimmerman
  • Publication number: 20020086124
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: July 4, 2002
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20020004028
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: January 10, 2002
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20010041160
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: November 15, 2001
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Publication number: 20010031900
    Abstract: This invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium.
    Type: Application
    Filed: March 16, 2001
    Publication date: October 18, 2001
    Inventors: John L. Margrave, Edward T. Mickelson, Robert Hauge, Peter Boul, Chad Huffman, Jie Liu, Richard E. Smalley, Ken Smith, Daniel T. Colbert
  • Patent number: 5827511
    Abstract: An improved preservative and embalming fluid and method has been developed. The embalming fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol, e.g. phenoxyethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde. The concentrate is diluted with water for use and may include a borate buffer.
    Type: Grant
    Filed: February 27, 1997
    Date of Patent: October 27, 1998
    Assignee: EFH, Inc.
    Inventors: James W. Campbell, John L. Margrave
  • Patent number: 5622695
    Abstract: An improved preserving fluid and method has been developed. The fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol e.g. phenoxyethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde.
    Type: Grant
    Filed: September 15, 1994
    Date of Patent: April 22, 1997
    Assignee: EFH, Inc.
    Inventors: James W. Campbell, John L. Margrave
  • Patent number: 5607668
    Abstract: An improved embalming composition and method has been developed. The embalming fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol, e.g. phenoxy-ethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde.
    Type: Grant
    Filed: September 15, 1994
    Date of Patent: March 4, 1997
    Assignee: EFH, Inc.
    Inventors: James W. Campbell, John L. Margrave
  • Patent number: 5405606
    Abstract: An improved embalming composition and method has been developed. The embalming fluid is a mixture including glutaraldehyde, an aromatic ether of ethanol phenoxyethanol, at least one alcohol, and a polyhydric alcohol humectant. The formulation has no formaldehyde.
    Type: Grant
    Filed: December 3, 1993
    Date of Patent: April 11, 1995
    Assignee: EFH, Inc.
    Inventors: James W. Campbell, John L. Margrave
  • Patent number: 5316795
    Abstract: The present invention is directed to a method for depositing diamond films and particles on a variety of substrates by flowing a gas or gas mixture capable of supplying (1) carbon, (2) hydrogen, (3) a halogen and, preferably, (4) a chalcogen through a reactor over the substrate material. The reactant gases may be premixed with an inert gas in order to keep the overall gas mixture composition low in volume percent of carbon and rich in hydrogen. Pre-treatment of the reactant gases to a high energy state is not required as it is in most prior art processes for chemical vapor deposition of diamond. Since pretreatment is not required, the process may be applied to substrates of virtually any desired size, shape or configuration.
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: May 31, 1994
    Assignee: Houston Advanced Research Center
    Inventors: Donald E. Patterson, Robert H. Hauge, C. Judith Chu, John L. Margrave
  • Patent number: 5071677
    Abstract: The present invention is directed to a method for depositing diamond films and particles on a variety of substrates by flowing a gas or gas mixture capable of supplying (1) carbon, (2) hydrogen and (3) a halogen through a reactor over the substrate material. The reactant gases may be pre-mixed with an inert gas in order to keep the overall gas mixture composition low in volume percent of carbon and rich in hydrogen. Pre-treatment of the reactant gases to a high energy state is not required as it is in most prior art processes for chemical vapor deposition of diamond. Since pre-treatment is not required, the process may be applied to substrates of virtually any desired size, shape or configuration.The reactant gas mixture preferably is passed through a reactor, a first portion of which is heated to a temperature of from about 400.degree. C. to about 920.degree. C. and more preferably from about 800.degree. C. to about 920.degree. C.
    Type: Grant
    Filed: May 24, 1990
    Date of Patent: December 10, 1991
    Assignee: Houston Advanced Research Center
    Inventors: Donald E. Patterson, Robert H. Hauge, C. Judith Chu, John L. Margrave
  • Patent number: 5011295
    Abstract: Method and apparatus for accurately and instantaneously determining the thermodynamic temperature of remote objects by continuous determination of the emissivity, the reflectivity, and optical constants, as well as the apparent or brightness temperature of the sample with a single instrument. The emissivity measurement is preferably made by a complex polarimeter including a laser that generates polarized light, which is reflected from the sample into a detector system. The detector system includes a beamsplitter, polarization analyzers, and four detectors to measure independently the four Stokes vectors of the reflected radiation. The same detectors, or a separate detector in the same instrument, is used to measure brightness temperature. Thus, the instrument is capable of measuring both the change in polarization upon reflection as well as the degree of depolarization and hence diffuseness.
    Type: Grant
    Filed: October 17, 1989
    Date of Patent: April 30, 1991
    Assignee: Houston Advanced Research Center
    Inventors: Shankar Krishnan, George P. Hansen, Robert H. Hauge, John L. Margrave, Charles A. Rey
  • Patent number: H1461
    Abstract: A coating is provided for an optical fiber that inhibits abrasion or scraing of the fiber's surface. The coating is obtained by depositing a thin film of non-hydrogenated diamond-like amorphous carbon (a-C) onto the optical fiber using a laser ablation technique employing graphite as a target material.
    Type: Grant
    Filed: May 10, 1993
    Date of Patent: July 4, 1995
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Sam DiVita, John L. Margrave, Leif Fredin, Donald E. Patterson