Patents by Inventor John Langmore

John Langmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210189382
    Abstract: Methods of barcoding nucleic acids, such as genomic DNA, are provided herein. In some embodiments, a fragment of genomic DNA may comprise a first and a second barcode.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 24, 2021
    Inventors: Takao Kurihara, Emmanuel Kamberov, Tim Tesmer, John Langmore
  • Patent number: 10961529
    Abstract: Methods of barcoding nucleic acids, such as genomic DNA, are provided herein. In some embodiments, a fragment of genomic DNA may comprise a first and a second barcode.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: March 30, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Takao Kurihara, Emmanuel Kamberov, Tim Tesmer, John Langmore
  • Patent number: 10655170
    Abstract: Methods of coupling adaptors to a target nucleic acid include coupling a first adaptor to a first end of the target nucleic acid to form a coupled first adaptor. A portion of a second adaptor is hybridized to a portion of the coupled first adaptor to form a hybridized second adaptor having a single-stranded 3?-end. The hybridized second adaptor is coupled to a second end of the target nucleic acid to form an adaptor-flanked product having at least a part of the first adaptor coupled to the first end of the target nucleic acid and at least a part of the second adaptor coupled to the second end of the target nucleic acid. These methods can minimize the formation of adaptor-dimers that may be problematic in subsequent complementary nucleic acid strand synthesis, amplification, and sequencing.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: May 19, 2020
    Assignee: Takara Bio USA, Inc.
    Inventors: Konstantinos Charizanis, Marta Gonzalez-Hernandez, Amanda McNulty, Karl Hecker, Emmanuel Kamberov, John Langmore
  • Patent number: 10301660
    Abstract: Provided herein are compositions for and methods of generating ligation-competent nucleic acids. In some aspects, the compositions comprise Exonuclease III, T4 DNA Polymerase, Klenow, and/or T4 polynucleotide kinase.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 28, 2019
    Assignee: TAKARA BIO USA, INC.
    Inventors: Emmanuel Kamberov, John Langmore, Tim Tesmer, Marta Gonzalez-Plasky
  • Publication number: 20190153434
    Abstract: Methods of barcoding nucleic acids, such as genomic DNA, are provided herein. In some embodiments, a fragment of genomic DNA may comprise a first and a second barcode.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 23, 2019
    Inventors: Takao Kurihara, Emmanuel Kamberov, Tim Tesmer, John Langmore
  • Patent number: 10155942
    Abstract: Methods of barcoding nucleic acids, such as genomic DNA, are provided herein. In some embodiments, a fragment of genomic DNA may comprise a first and a second barcode.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: December 18, 2018
    Assignee: Takara Bio USA, Inc.
    Inventors: Takao Kurihara, Emmanuel Kamberov, Tim Tesmer, John Langmore
  • Publication number: 20180010178
    Abstract: Methods of coupling adaptors to a target nucleic acid include coupling a first adaptor to a first end of the target nucleic acid to form a coupled first adaptor. A portion of a second adaptor is hybridized to a portion of the coupled first adaptor to form a hybridized second adaptor having a single-stranded 3?-end. The hybridized second adaptor is coupled to a second end of the target nucleic acid to form an adaptor-flanked product having at least a part of the first adaptor coupled to the first end of the target nucleic acid and at least a part of the second adaptor coupled to the second end of the target nucleic acid. These methods can minimize the formation of adaptor-dimers that may be problematic in subsequent complementary nucleic acid strand synthesis, amplification, and sequencing.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 11, 2018
    Inventors: Konstantinos Charizanis, Marta Gonzalez-Hernandez, Amanda McNulty, Karl Hecker, Emmanuel Kamberov, John Langmore
  • Publication number: 20160289723
    Abstract: Provided herein are compositions for and methods of generating ligation-competent nucleic acids. In some aspects, the compositions comprise Exonuclease III, T4 DNA Polymerase, Klenow, and/or T4 polynucleotide kinase.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Applicant: Rubicon Genomics, Inc.
    Inventors: Emmanuel KAMBEROV, John LANGMORE, Tim TESMER, Marta GONZALEZ-PLASKY
  • Publication number: 20160257985
    Abstract: The present disclosure provides systems, processes, articles of manufacture, and compositions that relate to the use of degradable adaptors for background reduction in various nucleic acid manipulations. In particular, adaptors are provided that can be degraded to an extent that the degradation products are incapable or are substantially incapable from participating in subsequent reactions, such as ligation, primer extension, amplification, and sequencing reactions.
    Type: Application
    Filed: November 18, 2014
    Publication date: September 8, 2016
    Applicant: RUBICON GENOMICS, INC.
    Inventors: Emmanuel Kamberov, John Langmore, Tim Tesmer
  • Publication number: 20150284712
    Abstract: Methods of barcoding nucleic acids, such as genomic DNA, are provided herein. In some embodiments, a fragment of genomic DNA may comprise a first and a second barcode.
    Type: Application
    Filed: November 5, 2013
    Publication date: October 8, 2015
    Applicant: Rubicon Genomics, Inc.
    Inventors: Takao Kurihara, Emmanuel Kamberov, Tim Tesmer, John Langmore
  • Publication number: 20060068394
    Abstract: The disclosed invention relates to general and specific methods to use the Primer Extension/Nick Translation (PENT) reaction to create an amplifiable DNA strand, called a PENTAmer. A PENTAmers can be made for the purpose of amplifying a controlled length of DNA located at a controlled position within a DNA molecule, a process referred to as Positional Amplification by Nick Translation (PANT). In contrast to PCR, which amplifies DNA between two specific sequences, PANT can amplify DNA between two specific positions. PENTAmers can be created to amplify-very large regions of DNA (up to 500,000 bp) as random mixtures (unordered positional libraries), or as molecules sorted according to position (ordered positional libraries). PANT is fast and economical, because PENTAmer preparation can be multiplexed. A single PENTAmer preparation can include very complex mixtures of DNA such as hundreds of large-insert clones, complete genomes, or cDNA libraries.
    Type: Application
    Filed: March 11, 2004
    Publication date: March 30, 2006
    Inventors: John Langmore, Vladimir Makarov
  • Publication number: 20050053986
    Abstract: Disclosed are a number of methods that can be used in a variety of embodiments, including, creation of a nucleic acid terminated at one or more selected bases, sequence analysis of nucleic acids, mapping of sequence motifs within a nucleic acid, positional mapping of nucleic acid clones, and analysis of telomeric regions. The methods utilize double-stranded templates, and in most aspects involve a strand replacement reaction initiated at one or more random or specific locations created in a nucleic acid molecule, and in certain aspects utilizing an oligonucleotide primer.
    Type: Application
    Filed: July 13, 2004
    Publication date: March 10, 2005
    Inventors: Vladimir Makarov, John Langmore