Patents by Inventor John Lawrence Meyer

John Lawrence Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11208920
    Abstract: Embodiments of the present disclosure include a method for controlling a power generation system, the method including: calculating, during operation of the power generation system, a target water level within a pressure vessel of the power generation system, the pressure vessel receiving a feedwater input and generating a steam output; calculating a flow rate change of the steam output from the pressure vessel; calibrating the target water level within the pressure vessel based on the output from mass flux through the pressure vessel, the mass flux through the pressure vessel being derived from the at least the feedwater input and the steam output; and adjusting an operating parameter of the power generation system based on the calibrated target water level within the pressure vessel.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 28, 2021
    Assignee: General Electric Company
    Inventors: John Lawrence Meyer, Cody Joe Bushey
  • Publication number: 20200386121
    Abstract: Embodiments of the present disclosure include a method for controlling a power generation system, the method including: calculating, during operation of the power generation system, a target water level within a pressure vessel of the power generation system, the pressure vessel receiving a feedwater input and generating a steam output; calculating a flow rate change of the steam output from the pressure vessel; calibrating the target water level within the pressure vessel based on the output from mass flux through the pressure vessel, the mass flux through the pressure vessel being derived from the at least the feedwater input and the steam output; and adjusting an operating parameter of the power generation system based on the calibrated target water level within the pressure vessel.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 10, 2020
    Inventors: John Lawrence Meyer, Cody Joe Bushey
  • Patent number: 10100679
    Abstract: A control system for a power plant includes a sensor that measures a rotor surface temperature of a steam turbine rotor, where the temperature is a function of exhaust gasses from a heat source for heating steam to a target temperature. The control system includes a controller coupled to the sensor and configured to compute the target temperature using an inverse process model for steam turbine rotor stress dynamics, and based on a reference steam turbine rotor stress and a feedback steam turbine rotor stress, compute a measured steam turbine rotor stress based on a measured surface temperature of the steam turbine rotor, compute an estimated steam turbine rotor stress using a process model for the steam turbine rotor stress dynamics, and based on the target temperature, and compute the feedback steam turbine rotor stress based on the measured steam turbine rotor stress and the estimated steam turbine rotor stress.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: Mert Geveci, John Lawrence Meyer
  • Patent number: 9598977
    Abstract: Certain embodiments of the disclosure may include systems and methods for boundary control during steam turbine acceleration. According to an example embodiment, the method can include receiving an indication the turbine is in an initial acceleration phase; receiving speed control parameter data from a plurality of sensors; receiving boundary control parameter data from a plurality of sensors; providing a control valve configured for controlling steam flow entering the turbine; determining the control valve position based on received speed control parameter data; determining the control valve position based on received boundary control parameter data; adjusting at least one boundary control parameter to the at least one boundary control parameter limit during turbine startup, wherein the value of a speed control parameter is simultaneously adjusted based on the adjusted at least one boundary control parameter; and adjusting the control valve position based at least on determined parameter data.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 21, 2017
    Assignee: General Electric Company
    Inventors: John Lawrence Meyer, Carl R. Toth, Dean Alexander Baker
  • Publication number: 20170058715
    Abstract: A control system for a power plant includes a sensor that measures a rotor surface temperature of a steam turbine rotor, where the temperature is a function of exhaust gasses from a heat source for heating steam to a target temperature. The control system includes a controller coupled to the sensor and configured to compute the target temperature using an inverse process model for steam turbine rotor stress dynamics, and based on a reference steam turbine rotor stress and a feedback steam turbine rotor stress, compute a measured steam turbine rotor stress based on a measured surface temperature of the steam turbine rotor, compute an estimated steam turbine rotor stress using a process model for the steam turbine rotor stress dynamics, and based on the target temperature, and compute the feedback steam turbine rotor stress based on the measured steam turbine rotor stress and the estimated steam turbine rotor stress.
    Type: Application
    Filed: August 28, 2015
    Publication date: March 2, 2017
    Inventors: Mert Geveci, John Lawrence Meyer
  • Publication number: 20150125257
    Abstract: Certain embodiments of the disclosure may include systems and methods for boundary control during steam turbine acceleration. According to an example embodiment, the method can include receiving an indication the turbine is in an initial acceleration phase; receiving speed control parameter data from a plurality of sensors; receiving boundary control parameter data from a plurality of sensors; providing a control valve configured for controlling steam flow entering the turbine; determining the control valve position based on received speed control parameter data; determining the control valve position based on received boundary control parameter data; adjusting at least one boundary control parameter to the at least one boundary control parameter limit during turbine startup, wherein the value of a speed control parameter is simultaneously adjusted based on the adjusted at least one boundary control parameter; and adjusting the control valve position based at least on determined parameter data.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: General Electric Company
    Inventors: John Lawrence Meyer, Carl R. Toth, Dean Alexander Baker