Patents by Inventor John Leamon

John Leamon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12146853
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: December 11, 2023
    Date of Patent: November 19, 2024
    Assignee: Life Technologies Corporation
    Inventors: James Bustillo, Mark J. Milgrew, Wolfgang Hinz, John Leamon, John Davidson, Martin Huber, Antoine M. van Oijen, Jonathan Rothberg
  • Publication number: 20240201126
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: December 11, 2023
    Publication date: June 20, 2024
    Inventors: James BUSTILLO, Mark J. MILGREW, Wolfgang HINZ, John LEAMON, John DAVIDSON, Martin HUBER, Antoine M. VAN OIJEN, Jonathan ROTHBERG
  • Publication number: 20240117420
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for multiplex PCR of one or more nucleic acids present in a sample. In particular, various target-specific primers are provided that allow for the selective amplification of one or more target sequences. In one aspect, the invention relates to target-specific primers useful for the selective amplification of one or more target sequences associated with cancer or inherited disease. In some aspects, amplified target sequences obtained using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including nucleic acid sequencing and used to detect the presence of genetic variants.
    Type: Application
    Filed: November 10, 2023
    Publication date: April 11, 2024
    Inventors: John LEAMON, Mark ANDERSEN, Michael THORNTON
  • Patent number: 11874250
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 16, 2024
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, John F. Davidson, Antoine M. van Oijen, John Leamon, Martin Huber, Mark James Milgrew, James Bustillo
  • Patent number: 11851703
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for multiplex PCR of one or more nucleic acids present in a sample. In particular, various target-specific primers are provided that allow for the selective amplification of one or more target sequences. In one aspect, the invention relates to target-specific primers useful for the selective amplification of one or more target sequences associated with cancer or inherited disease. In some aspects, amplified target sequences obtained using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including nucleic acid sequencing and used to detect the presence of genetic variants.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: December 26, 2023
    Assignee: Life Technologies Corporation
    Inventors: John Leamon, Mark Andersen, Michael Thornton
  • Publication number: 20230152271
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: August 31, 2022
    Publication date: May 18, 2023
    Inventors: Jonathan M. ROTHBERG, Wolfgang HINZ, John F. DAVIDSON, Antoine M. van OIJEN, John LEAMON, Martin HUBER, Mark James MILGREW, James BUSTILLO
  • Patent number: 11530444
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: December 20, 2022
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo, John Leamon, Jonathan Schultz
  • Patent number: 11448613
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: September 20, 2022
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, John F. Davidson, Antoine M. van Oijen, John Leamon, Martin Huber, Mark James Milgrew, James Bustillo
  • Publication number: 20210139949
    Abstract: A sample preparation apparatus includes a robotic system providing movement in three orthogonal directions to an arm operable to receive a pipette tip and to facilitate movement of fluid into and out of the pipette tip. Optionally, the robot can include a gripper arm in addition to the pipette receiving arm. In addition, the sample preparation apparatus can include a tray for receiving pipette tips, receptacles for receiving tubes, an apparatus for forming an emulsion, a device for forming particles that include copies of the polynucleotide, a device for enriching the particles, as well as a centrifuge for loading such particles onto a sensor array. The sample preparation apparatus can further include receptacles for holding containers of reagent solutions.
    Type: Application
    Filed: September 21, 2020
    Publication date: May 13, 2021
    Inventors: Kristopher BARBEE, Ryan JONES, Sean MCCUSKER, Maximilian CARPINO, John LEAMON, Jonathan SCHULTZ
  • Publication number: 20210047686
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in the concentration of inorganic pyrophosphate (PPi), hydrogen ions, and nucleotide triphosphates.
    Type: Application
    Filed: May 22, 2020
    Publication date: February 18, 2021
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo, John Leamon, Jonathan Schultz
  • Publication number: 20210032679
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for multiplex PCR of one or more nucleic acids present in a sample. In particular, various target-specific primers are provided that allow for the selective amplification of one or more target sequences. In one aspect, the invention relates to target-specific primers useful for the selective amplification of one or more target sequences associated with cancer or inherited disease. In some aspects, amplified target sequences obtained using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including nucleic acid sequencing and used to detect the presence of genetic variants.
    Type: Application
    Filed: October 15, 2020
    Publication date: February 4, 2021
    Inventors: John LEAMON, Mark ANDERSEN, Michael THORNTON
  • Patent number: 10837052
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for multiplex PCR of one or more nucleic acids present in a sample. In particular, various target-specific primers are provided that allow for the selective amplification of one or more target sequences. In one aspect, the invention relates to target-specific primers useful for the selective amplification of one or more target sequences associated with cancer or inherited disease. In some aspects, amplified target sequences obtained using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including nucleic acid sequencing and used to detect the presence of genetic variants.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 17, 2020
    Assignee: Life Technologies Corporation
    Inventors: John Leamon, Mark Andersen, Michael Thornton
  • Patent number: 10829811
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for multiplex PCR of one or more nucleic acids present in a sample. In particular, various target-specific primers are provided that allow for the selective amplification of one or more target sequences. In one aspect, the invention relates to target-specific primers useful for the selective amplification of one or more target sequences associated with cancer or inherited disease. In some aspects, amplified target sequences obtained using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including nucleic acid sequencing and used to detect the presence of genetic variants.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 10, 2020
    Assignee: Life Technologies Corporation
    Inventors: John Leamon, Mark Andersen, Michael Thornton
  • Patent number: 10781474
    Abstract: A sample preparation apparatus includes a robotic system providing movement in three orthogonal directions to an arm operable to receive a pipette tip and to facilitate movement of fluid into and out of the pipette tip. Optionally, the robot can include a gripper arm in addition to the pipette receiving arm. In addition, the sample preparation apparatus can include a tray for receiving pipette tips, receptacles for receiving tubes, an apparatus for forming an emulsion, a device for forming particles that include copies of the polynucleotide, a device for enriching the particles, as well as a centrifuge for loading such particles onto a sensor array. The sample preparation apparatus can further include receptacles for holding containers of reagent solutions.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: September 22, 2020
    Assignee: Life Technologies Corporation
    Inventors: Kristopher Barbee, Ryan Jones, Sean McCusker, Maximilian Carpino, John Leamon, Jonathan Schultz
  • Publication number: 20200239877
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Application
    Filed: April 6, 2020
    Publication date: July 30, 2020
    Inventors: Wolfgang HINZ, John LEAMON, David LIGHT, Jonathan M. ROTHBERG
  • Patent number: 10612017
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: April 7, 2020
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Wolfgang Hinz, John Leamon, David Light, Jonathan M. Rothberg
  • Patent number: 10266881
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for multiplex PCR of one or more nucleic acids present in a sample. In particular, various target-specific primers are provided that allow for the selective amplification of one or more target sequences. In one aspect, the invention relates to target-specific primers useful for the selective amplification of one or more target sequences associated with cancer or inherited disease. In some aspects, amplified target sequences obtained using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including nucleic acid sequencing and used to detect the presence of genetic variants.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: April 23, 2019
    Assignee: Life Technologies Corporation
    Inventors: John Leamon, Mark Andersen, Michael Thornton
  • Publication number: 20190079047
    Abstract: Methods and apparatus relating to FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
    Type: Application
    Filed: August 10, 2018
    Publication date: March 14, 2019
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, John F. Davidson, Antoine M. van Oijen, John Leamon, Martin Huber
  • Publication number: 20190071667
    Abstract: The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
    Type: Application
    Filed: September 4, 2018
    Publication date: March 7, 2019
    Inventors: Wolfgang HINZ, John LEAMON, David LIGHT, Jonathan M. ROTHBERG
  • Patent number: 10100354
    Abstract: The present invention provides methods, compositions, kits, systems and apparatus that are useful for determining copy number variation of one or more nucleic acids present in a sample. In some aspects, the method includes various target-specific primers that allow for the selective amplification of one or more target nucleic acids in the sample. In yet another aspect, the invention relates to determining copy number variation with respect to gene or chromosome representation of a nucleic acid in the sample. In some aspects, the method for determining copy number variation of different target nucleic acids in a sample using the disclosed methods, kits, systems and apparatuses can be used in various downstream processes including diagnosis, predictive therapeutic regimes or other therapeutic purposes.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: October 16, 2018
    Assignee: Life Technologies Corporation
    Inventors: John Leamon, Mark Andersen, Michael Thornton