Patents by Inventor John Lewis Emerson Campbell

John Lewis Emerson Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220326232
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Application
    Filed: May 27, 2022
    Publication date: October 13, 2022
    Applicant: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Cary James Miller
  • Patent number: 11402375
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: August 2, 2022
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Cary James Miller
  • Patent number: 11391747
    Abstract: The present invention relates to analytical testing devices comprising fluidic junctions and methods for assaying coagulation in a fluid sample received within the fluidic junctions. For example, the present invention may be directed to a sample analysis cartridge including an inlet chamber, a first conduit comprising a first junction configured to split a biological sample into at least first and second segments, a second conduit comprising a first reagent, a first sensor region, and a first fluidic lock valve, and a third conduit comprising a second reagent, a second sensor region, and a second fluidic lock valve. The sample analysis cartridge further includes a pump configured to push the first segment over the first sensor region to the first fluidic lock valve, and push the second segment over the second sensor region to the second fluidic lock valve.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 19, 2022
    Assignee: Abbott Point of Care Inc.
    Inventors: Katrina Petronilla Di Tullio, Jay Kendall Taylor, Niko Daniel Lee-Yow, Sheila Diane Ball, John Lewis Emerson Campbell
  • Publication number: 20220034874
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a housing, a heterogeneous surface capture immunosensor within the housing and configured to generate a first signal indicative of the concentration of the analyte in an upper concentration range, and a homogeneous magnetic bead capture immunosensor within the housing and configured to generate a second signal indicative of the concentration of the analyte in a lower concentration range.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Applicant: Abbott Point of Care Inc.
    Inventors: Jing Hua Hu, Antii Leo Oskari Virtanen, John Wilfrid Bezaire, Eric Edward Potter, James T.K. Smith, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Patent number: 11156607
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a housing, a heterogeneous surface capture immunosensor within the housing and configured to generate a first signal indicative of the concentration of the analyte in an upper concentration range, and a homogeneous magnetic bead capture immunosensor within the housing and configured to generate a second signal indicative of the concentration of the analyte in a lower concentration range.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 26, 2021
    Assignee: Abbott Point of Care Inc.
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, John Wilfrid Bezaire, Eric Edward Potter, James T. K. Smith, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Patent number: 10871488
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a method includes determining a first concentration of an analyte at a first immunosensor from a reaction of a signal agent with a first complex of signal antibodies, the analyte, and capture antibodies immobilized on a surface of the first immunosensor, determining a second concentration of the analyte at a second immunosensor from a reaction of the signal agent with a second complex of the signal antibodies, the analyte, and capture antibodies immobilized on magnetic beads that are localized on or near a surface of the second immunosensor via a magnetic field, determining a weighted average of the first concentration and the second concentration, and comparing the weighted average to a predetermined crossover concentration point or zone.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 22, 2020
    Assignee: Abbott Point of Care Inc.
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Patent number: 10641767
    Abstract: The invention relates to compositions and methods for the immunoassay of an analyte of interest. The analyte is detected in an immunoassay using three or more antibodies, where in each antibody specifically binds to a different epitope on the analyte. When the analyte of interest in a clinical marker for an acute disease, the detection of the analyte by immunoassay is a diagnosis of the occurrence of the disease.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: May 5, 2020
    Assignee: Abbott Point of Care Inc.
    Inventors: John Lewis Emerson Campbell, Pamela Anne Frank, Meghan Elizabeth Hawkes, Shannon Reishma Lobin, Cary James Miller, Zhen Yang
  • Publication number: 20200072827
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a first immunosensor including an immobilized layer of capture antibodies configured to bind to a first complex of signal antibodies and cardiac troponin such that a second complex of the first complex and the immobilized layer of capture antibodies is localized on or near the first immunosensor. The device further includes a second immunosensor having a magnetic field disposed locally around the second immunosensor. The magnetic field is configured to attract magnetic beads such that a third complex of the first complex and capture antibodies immobilized on the magnetic beads is localized on or near the second immunosensor sensor.
    Type: Application
    Filed: November 11, 2019
    Publication date: March 5, 2020
    Applicant: Abbott Point of Care Inc.
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, Eric Edward Potter, James T.K. Smith, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Patent number: 10514379
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a first immunosensor including an immobilized layer of capture antibodies configured to bind to a first complex of signal antibodies and cardiac troponin such that a second complex of the first complex and the immobilized layer of capture antibodies is localized on or near the first immunosensor. The device further includes a second immunosensor having a magnetic field disposed locally around the second immunosensor. The magnetic field is configured to attract magnetic beads such that a third complex of the first complex and capture antibodies immobilized on the magnetic beads is localized on or near the second immunosensor sensor.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: December 24, 2019
    Assignee: Abbott Point of Care Inc.
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, Eric Edward Potter, James T. K. Smith, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Patent number: 10234450
    Abstract: The present invention is directed to methods and devices for amending undiluted and partially diluted urine samples in a manner suitable for performing immunoassays for target analytes, for example NGAL. Generally, the urine sample is treated with reagents including at least one of buffer materials, water soluble proteins, urease, and other interferent mitigants. These reagents control the pH of the urine sample in a manner suitable for immuno-binding reactions and ameliorate interferences, particularly during the detection step.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: March 19, 2019
    Assignee: Abbott Point of Care Inc.
    Inventors: Katrina Di Tullio, G. Bruce Collier, John Lewis Emerson Campbell
  • Patent number: 10209251
    Abstract: The present invention is directed to methods and devices for amending undiluted and partially diluted urine samples in a manner suitable for performing immunoassays for target analytes, for example NGAL. Generally, the urine sample is treated with reagents including at least one of buffer materials, water soluble proteins, urease, and other interferent mitigants. These reagents control the pH of the urine sample in a manner suitable for immuno-binding reactions and ameliorate interferences, particularly during the detection step.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 19, 2019
    Assignee: Abbott Point of Care Inc.
    Inventors: Katrina Di Tullio, G. Bruce Collier, John Lewis Emerson Campbell
  • Publication number: 20180321264
    Abstract: The present invention relates to analytical testing devices comprising fluidic junctions and methods for assaying coagulation in a fluid sample received within the fluidic junctions. For example, the present invention may be directed to a sample analysis cartridge including an inlet chamber, a first conduit comprising a first junction configured to split a biological sample into at least first and second segments, a second conduit comprising a first reagent, a first sensor region, and a first fluidic lock valve, and a third conduit comprising a second reagent, a second sensor region, and a second fluidic lock valve. The sample analysis cartridge further includes a pump configured to push the first segment over the first sensor region to the first fluidic lock valve, and push the second segment over the second sensor region to the second fluidic lock valve.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Applicant: Abbott Point of Care Inc.
    Inventors: Katrina Petronilla Di Tullio, Jay Kendall Taylor, Niko Daniel Lee-Yow, Sheila Diane Ball, John Lewis Emerson Campbell
  • Publication number: 20180321265
    Abstract: The present invention relates to analytical testing devices comprising segmented fluidics and methods for assaying coagulation in a fluid sample received within the segmented fluidics. For example, the present invention may be directed to sample analysis cartridge including an inlet chamber, a first conduit comprising a first junction configured to split a biological sample into at least first and second segments, a second conduit comprising a first reagent, a first sensor region, and a first fluidic lock valve, and a third conduit comprising a first flow restrictor region, a second reagent, and a second sensor region. The sample analysis cartridge further includes a pump configured to independently mix the first segment in the second conduit and the second segment in the third conduit, and independently position the first segment over the first sensor region and position the second segment over the second sensor region.
    Type: Application
    Filed: July 13, 2018
    Publication date: November 8, 2018
    Applicant: Abbott Point of Care Inc.
    Inventors: Katrina Petronilla Di Tullio, Jay Kendall Taylor, John Lewis Emerson Campbell, Caglar Elbuken, Shelia Diane Ball, Noam Saul Lightstone
  • Publication number: 20180259511
    Abstract: The invention relates to compositions and methods for the immunoassay of an analyte of interest. The analyte is detected in an immunoassay using three or more antibodies, where in each antibody specifically binds to a different epitope on the analyte. When the analyte of interest in a clinical marker for an acute disease, the detection of the analyte by immunoassay is a diagnosis of the occurrence of the disease.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Inventors: John Lewis Emerson Campbell, Pamela Anne Frank, Meghan Elizabeth Hawkes, Shannon Reishma Lobin, Cary James Miller, Zhen Yang
  • Patent number: 10048258
    Abstract: The present invention provides apparatus and methods for the rapid determination of analytes in liquid samples by immunoassays incorporating magnetic capture of beads on a sensor capable of being used in the point-of-care diagnostic field.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 14, 2018
    Assignee: Abbott Point of Care Inc.
    Inventors: Cary James Miller, John Lewis Emerson Campbell
  • Patent number: 10048282
    Abstract: The present invention relates to analytical testing devices comprising fluidic junctions and methods for assaying coagulation in a fluid sample received within the fluidic junctions. For example, the present invention may be directed to a sample analysis cartridge including an inlet chamber, a first conduit comprising a first junction configured to split a biological sample into at least first and second segments, a second conduit comprising a first reagent, a first sensor region, and a first fluidic lock valve, and a third conduit comprising a second reagent, a second sensor region, and a second fluidic lock valve. The sample analysis cartridge further includes a pump configured to push the first segment over the first sensor region to the first fluidic lock valve, and push the second segment over the second sensor region to the second fluidic lock valve.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: August 14, 2018
    Assignee: Abbott Point of Care Inc.
    Inventors: Katrina Petronilla Di Tullio, Jay Kendall Taylor, Niko Daniel Lee-Yow, Sheila Diane Ball, John Lewis Emerson Campbell
  • Patent number: 10048281
    Abstract: The present invention relates to analytical testing devices comprising segmented fluidics and methods for assaying coagulation in a fluid sample received within the segmented fluidics. For example, the present invention may be directed to sample analysis cartridge including an inlet chamber, a first conduit comprising a first junction configured to split a biological sample into at least first and second segments, a second conduit comprising a first reagent, a first sensor region, and a first fluidic lock valve, and a third conduit comprising a first flow restrictor region, a second reagent, and a second sensor region. The sample analysis cartridge further includes a pump configured to independently mix the first segment in the second conduit and the second segment in the third conduit, and independently position the first segment over the first sensor region and position the second segment over the second sensor region.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: August 14, 2018
    Assignee: Abbott Point of Care Inc.
    Inventors: Katrina Petronilla Di Tullio, Jay Kendall Taylor, John Lewis Emerson Campbell, Caglar Elbuken, Shelia Diane Ball, Noam Saul Lightstone
  • Publication number: 20180164306
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a first immunosensor including an immobilized layer of capture antibodies configured to bind to a first complex of signal antibodies and cardiac troponin such that a second complex of the first complex and the immobilized layer of capture antibodies is localized on or near the first immunosensor. The device further includes a second immunosensor having a magnetic field disposed locally around the second immunosensor. The magnetic field is configured to attract magnetic beads such that a third complex of the first complex and capture antibodies immobilized on the magnetic beads is localized on or near the second immunosensor sensor.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 14, 2018
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, Eric Edward Potter, James T.K. Smith, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Publication number: 20180164302
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a housing, a heterogeneous surface capture immunosensor within the housing and configured to generate a first signal indicative of the concentration of the analyte in an upper concentration range, and a homogeneous magnetic bead capture immunosensor within the housing and configured to generate a second signal indicative of the concentration of the analyte in a lower concentration range.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 14, 2018
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, John Wilfrid Bezaire, Eric Edward Potter, James T.K. Smith, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss
  • Publication number: 20180164305
    Abstract: The present invention relates to systems and methods that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a method includes determining a first concentration of an analyte at a first immunosensor from a reaction of a signal agent with a first complex of signal antibodies, the analyte, and capture antibodies immobilized on a surface of the first immunosensor, determining a second concentration of the analyte at a second immunosensor from a reaction of the signal agent with a second complex of the signal antibodies, the analyte, and capture antibodies immobilized on magnetic beads that are localized on or near a surface of the second immunosensor via a magnetic field, determining a weighted average of the first concentration and the second concentration, and comparing the weighted average to a predetermined crossover concentration point or zone.
    Type: Application
    Filed: December 8, 2017
    Publication date: June 14, 2018
    Inventors: Jing Hua Hu, Antti Leo Oskari Virtanen, Cary James Miller, John Lewis Emerson Campbell, Adam Roger Moss