Patents by Inventor John Lockemeyer

John Lockemeyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080015393
    Abstract: A high activity and high selectivity silver catalyst comprising silver and, optionally, one or more promoters supported on a suitable support material having the form of a shaped agglomerate. The structure of the shaped agglomerate is that of a hollow cylinder having a relatively small inside (bore) diameter. The catalyst is made by providing the shaped material of a particular geometry and incorporating the catalytic components therein. The catalyst is useful in the epoxidation of ethylene.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Inventors: Marek MATUSZ, Michael RICHARD, John LOCKEMEYER, Alouisius BOS, Dominicus REKERS, Donald REINALDA, Randall YEATES, Paul MCALLISTER
  • Publication number: 20070213545
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: September 13, 2007
    Inventors: Jeroen BOLK, Alouisius Bos, Wayne Evans, John Lockemeyer, Paul Mcallister, Bernardus Marie Ramakers, Dominicus Rekers, Mathias Slapak
  • Publication number: 20070208186
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: May 9, 2007
    Publication date: September 6, 2007
    Inventor: John LOCKEMEYER
  • Publication number: 20070207914
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: May 9, 2007
    Publication date: September 6, 2007
    Inventor: John LOCKEMEYER
  • Publication number: 20070203352
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 30, 2007
    Inventors: Jeroen Bolk, Alouisius Bos, Wayne Evans, John Lockemeyer, Paul McAllister, Bernardus Franciscus Ramakers, Dominicus Rekers, Mathias Slapak
  • Publication number: 20070203349
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 30, 2007
    Inventors: Jeroen Bolk, Alouisius Bos, Wayne Evans, John Lockemeyer, Paul McAllister, Bernardus Marie Ramakers, Dominicus Rekers, Mathias Slapak
  • Publication number: 20070203350
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 30, 2007
    Inventors: Jeroen Bolk, Alouisius Renee Bos, Wayne Evans, John Lockemeyer, Paul Mcallister, Bernardus Josef Marie Ramakers, Dominicus Rekers, Mathias Paul Slapak
  • Publication number: 20070203348
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 30, 2007
    Inventors: Jeroen Bolk, Alouisius Bos, Wayne Evans, John Lockemeyer, Paul McAllister, Bernardus Josef Marie Ramakers, Dominicus Rekers, Mathias Slapak
  • Publication number: 20070197801
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 23, 2007
    Inventors: Jeroen Bolk, Alouisius Nicolaas Bos, Wayne Evans, John Lockemeyer, Paul McAllister, Bernardus Franciscus Josef Ramakers, Dominicus Rekers, Mathias Jozef Slapak
  • Publication number: 20070197808
    Abstract: The present invention relates to an improved epoxidation process and an improved epoxidation reactor. The present invention makes use of a reactor which comprises a plurality of microchannels. Such process microchannels may be adapted such that the epoxidation and optionally other processes can take place in the microchannels and that they are in a heat exchange relation with channels adapted to contain a heat exchange fluid. A reactor comprising such process microchannels is referred to as a “microchannel reactor”. The invention also provides a method of installing an epoxidation catalyst in a microchannel reactor. The invention also provides a method of preparing an epoxidation catalyst. The invention also provides an epoxidation catalyst. The invention also provides a certain process for the epoxidation of an olefin and a process for the preparation of a chemical derivable from an olefin oxide. The invention also provides a microchannel reactor.
    Type: Application
    Filed: December 20, 2006
    Publication date: August 23, 2007
    Inventors: Jeroen Bolk, Alouisius Renee Bos, Wayne Evans, John Lockemeyer, Paul McAllister, Bernardus Franciscus Josef Ramakers, Dominicus Rekers, Mathias Jozef Slapak
  • Publication number: 20070191618
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: April 25, 2007
    Publication date: August 16, 2007
    Inventor: John Lockemeyer
  • Publication number: 20070184973
    Abstract: A catalyst which comprises a carrier and silver deposited on the carrier, which carrier has a surface area of at least 1 m2/g, and a pore size distribution such that pores with diameters in the range of from 0.2 to 10 ?m represent at least 70% of the total pore volume and such pores together provide a pore volume of at least 0.
    Type: Application
    Filed: April 12, 2007
    Publication date: August 9, 2007
    Applicant: Shell Oil Company
    Inventors: John LOCKEMEYER, Randall Yeates, Thomas Szymanski, Donald Remus, William Gerdes
  • Publication number: 20060281631
    Abstract: A carrier, which comprises non-platelet alumina and/or a bond material, has a surface area of at least 1.3 m2/g, a total pore volume and a pore size distribution such that at least 80% of the total pore volume is contained in pores with diameters in the range of from 0.1 to 10 ?m, and at least 80% of the pore volume contained in the pores with diameters in the range of from 0.1 to 10 ?m is contained in pores with diameters in the range of from 0.
    Type: Application
    Filed: June 6, 2006
    Publication date: December 14, 2006
    Inventors: William Gerdes, Thomas Szymanski, Donald Remus, John Lockemeyer, Randall Yeates
  • Publication number: 20060047130
    Abstract: A process is provided for preparing a carrier which process comprises incorporating into the carrier at any stage of the carrier preparation a strength-enhancing additive. Also provided is the resultant carrier having incorporated therein a strength-enhancing additive and a catalyst comprising the carrier. Also provided is a process for the epoxidation of an olefin employing the catalyst. Also provided is a method of using the olefin oxide so produced for making a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 2, 2006
    Inventors: Randall Yeates, John Lockemeyer, Marek Matusz
  • Publication number: 20050222462
    Abstract: A process for preparing a catalyst comprising silver, a rhenium component, and a rhenium co-promoter on a support, which process comprises depositing the rhenium co-promoter on the support prior to or simultaneously with depositing silver on the support, and depositing the rhenium component on the support after depositing silver on the support; the catalyst; and a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the catalyst.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 6, 2005
    Inventors: John Lockemeyer, Randall Yeates
  • Publication number: 20050222442
    Abstract: A process for preparing an epoxidation catalyst comprising silver and a high-selectivity dopant on a support, which process comprises depositing a base having a pKb of at most 3.5 when measured in water at 25° C., on the support prior to depositing silver on the support, and depositing silver and a high-selectivity dopant on the support; the epoxidation catalyst; and a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the epoxidation catalyst.
    Type: Application
    Filed: March 31, 2005
    Publication date: October 6, 2005
    Inventor: John Lockemeyer
  • Publication number: 20050096219
    Abstract: The selectivity and activity of a silver-based olefin epoxidation catalyst is found to be a function of the pore size distribution in the alumina carrier on which it is deposited. Specifically it is found advantageous to provide a carrier which has a minimum of very large pores, (greater than 10 micrometers) and a water absorption of 35 to 55% and a surface area of at least 1.0 m2/g. A method of making such carriers is also described.
    Type: Application
    Filed: December 13, 2004
    Publication date: May 5, 2005
    Inventors: Thomas Szymanski, Donald Remus, John Lockemeyer, Randall Yeates, William Gerdes
  • Publication number: 20050085650
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: September 8, 2004
    Publication date: April 21, 2005
    Inventor: John Lockemeyer
  • Publication number: 20050085380
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: September 8, 2004
    Publication date: April 21, 2005
    Inventor: John Lockemeyer
  • Publication number: 20050085649
    Abstract: There is provided a catalyst carrier comprising a refractory inorganic material having a sodium solubilization rate no greater than 5 ppmw/5 minutes. There is further a catalyst comprising a refractory inorganic material carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and one or more catalytically reactive metals deposited on said carrier. There is also provided a catalyst suitable for the vapor phase production of alkylene oxide from olefins and oxygen comprising an alumina-based carrier having a sodium solubilization rate no greater than 5 ppmw/5 minutes; and catalytically reactive silver deposited on said carrier.
    Type: Application
    Filed: September 8, 2004
    Publication date: April 21, 2005
    Inventor: John Lockemeyer