Patents by Inventor John Louis Griffiths

John Louis Griffiths has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11260337
    Abstract: The invention provides a process to purify a gas stream by using an adsorbent bed and a secondary device to remove heavy hydrocarbons with a recycle stream then sent first to a vessel containing an amine solvent to remove acid gases including carbon dioxide and hydrogen sulfide and then in most embodiments of the invention sending the treated gas stream to a dehydration unit such as an adsorbent bed or to a triethylene glycol absorbent to remove water. The invention further provides improved integration of the process streams to allow for smaller amine solvent and dehydration units as compared to the prior art.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 1, 2022
    Assignee: UOP LLC
    Inventors: John Louis Griffiths, Shain-Jer Doong, James Robert Gaspar
  • Patent number: 11097219
    Abstract: A process for regenerating a temperature swing adsorption unit comprising: sending a heated purge gas stream through an adsorption bed to remove impurities from said adsorption bed and producing a contaminated stream; sending said contaminated stream to a separator to produce a liquid stream and a vapor stream; returning said vapor stream as at least a portion of said heated purge stream until said vapor stream comprises above a predetermined level of impurities; and purging a portion of said vapor stream until the heated purge stream has a level of impurities below a second predetermined level.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: August 24, 2021
    Assignee: UOP LLC
    Inventors: John Louis Griffiths, Shain-Jer Doong, James Robert Gaspar, Jayant Kumar Gorawara
  • Publication number: 20190299155
    Abstract: A process for regenerating a temperature swing adsorption unit comprising: sending a heated purge gas stream through an adsorption bed to remove impurities from said adsorption bed and producing a contaminated stream; sending said contaminated stream to a separator to produce a liquid stream and a vapor stream; returning said vapor stream as at least a portion of said heated purge stream until said vapor stream comprises above a predetermined level of impurities; and purging a portion of said vapor stream until the heated purge stream has a level of impurities below a second predetermined level.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Inventors: John Louis Griffiths, Shain-Jer Doong, James Robert Gaspar, Jayant Kumar Gorawara
  • Publication number: 20190299151
    Abstract: The invention provides a process to purify a gas stream by using an adsorbent bed and a secondary device to remove heavy hydrocarbons with a recycle stream then sent first to a vessel containing an amine solvent to remove acid gases including carbon dioxide and hydrogen sulfide and then in most embodiments of the invention sending the treated gas stream to a dehydration unit such as an adsorbent bed or to a triethylene glycol absorbent to remove water. The invention further provides improved integration of the process streams to allow for smaller amine solvent and dehydration units as compared to the prior art.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 3, 2019
    Inventors: John Louis Griffiths, Shain-Jer Doong, James Robert Gaspar
  • Patent number: 6843973
    Abstract: In a process for the recovery of krypton and xenon, an oxygen-enriched stream containing krypton and/or xenon and hydrocarbons is removed from an air separation unit. A substantial portion of the hydrocarbons, especially methane, ethane, and acetylene, is removed from the oxygen-enriched stream prior to the distillation process. The hydrocarbon removal process includes, but is not restricted to, the hydrocarbons reacting with a portion of the oxygen present in the feed gas. The krypton and xenon are eventually recovered from the oxygen stream through a distillation process. The distillation process is performed in such a manner that at least a stream further enriched in both krypton and xenon is produced.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: January 18, 2005
    Assignee: Air Products and Chemicals
    Inventors: John Louis Griffiths, Adam Adrian Brostow
  • Patent number: 6735980
    Abstract: A method for recovering krypton and xenon from air comprises (a) separating an air feed stream into oxygen-enriched and nitrogen-enriched product streams; (b) reacting the oxygen-rich product stream with a hydrocarbon feed in a synthesis gas generation process to yield a synthesis gas stream comprising hydrogen, carbon oxides, krypton, and xenon, which synthesis gas stream contains essentially no oxygen; (c) introducing the synthesis gas stream into a synthesis gas conversion process and converting the synthesis gas stream into a liquid synthesis product stream and an unreacted synthesis gas stream; (d) recycling at least a portion of the unreacted synthesis gas stream to the synthesis gas generation process; (e) reducing the pressure of the liquid synthesis product stream to yield a two-phase reduced-pressure product stream, and separating the two-phase reduced-pressure product stream into a final liquid synthesis product stream and a gas stream enriched in krypton and xenon; and (f) separating the gas strea
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: May 18, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Stephen John Cook, John Louis Griffiths
  • Publication number: 20030206849
    Abstract: In a process for the recovery of krypton and xenon, an oxygen-enriched stream containing krypton and/or xenon and hydrocarbons is removed from an air separation unit. A substantial portion of the hydrocarbons, especially methane, ethane, and acetylene, is removed from the oxygen-enriched stream prior to the distillation process. The hydrocarbon removal process includes, but is not restricted to, the hydrocarbons reacting with a portion of the oxygen present in the feed gas. The krypton and xenon are eventually recovered from the oxygen stream through a distillation process. The distillation process is performed in such a manner that at least a stream further enriched in both krypton and xenon is produced.
    Type: Application
    Filed: May 1, 2002
    Publication date: November 6, 2003
    Inventors: John Louis Griffiths, Adam Adrian Brostow
  • Patent number: 6637240
    Abstract: A process for producing a nitrogen-enriched vapor product from a supply of a nitrogen-rich liquid uses a purifying device and a distillation column having a distillation zone. The process includes the steps of: feeding at least a portion of the supply of the nitrogen-rich liquid to the distillation zone at a first location; feeding a stream of a gas containing nitrogen and at least one contaminant to the purifying device, wherein the gas is cooled by a cryogenic liquid whereby at least a portion of the at least one contaminant condenses, solidifies, or dissolves; eventually feeding at least a portion of the cool gas from the purifying device to the distillation zone at a second location below the first location; withdrawing a stream of the nitrogen-enriched vapor product from the distillation zone; and withdrawing a stream of an oxygen-enriched liquid from the distillation zone.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: October 28, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Louis Griffiths, Adam Adrian Brostow, Declan Patrick O'Connor, Swaminathan Sunder, Patrick Alan Houghton
  • Publication number: 20030129127
    Abstract: A method for recovering krypton and xenon from air comprises (a) separating an air feed stream into oxygen-enriched and nitrogen-enriched product streams; (b) reacting the oxygen-rich product stream with a hydrocarbon feed in a synthesis gas generation process to yield a synthesis gas stream comprising hydrogen, carbon oxides, krypton, and xenon, which synthesis gas stream contains essentially no oxygen; (c) introducing the synthesis gas stream into a synthesis gas conversion process and converting the synthesis gas stream into a liquid synthesis product stream and an unreacted synthesis gas stream; (d) recycling at least a portion of the unreacted synthesis gas stream to the synthesis gas generation process; (e) reducing the pressure of the liquid synthesis product stream to yield a two-phase reduced-pressure product stream, and separating the two-phase reduced-pressure product stream into a final liquid synthesis product stream and a gas stream enriched in krypton and xenon; and (f) separating the gas strea
    Type: Application
    Filed: January 4, 2002
    Publication date: July 10, 2003
    Inventors: Stephen John Cook, John Louis Griffiths
  • Patent number: 6490883
    Abstract: Volatile compounds (“VCs”), especially volatile organic compounds (“VOCs”), are cryogenically removed from a process gas stream (pW) by cooling the gas stream in a condenser to condense the VC to form both liquid VC and VC ice and providing a treated process gas essentially freed of the VC but containing entrained VC ice particles, which are subsequently removed by passing the treated process gas through a filter downstream of the condenser to remove at least particles of a size greater than 50 &mgr;m. The condensation can be conducted in an indirect heat exchanger or by direct contact of the process gas with a liquid cryogen such as liquid nitrogen. It is preferred that the filter removes VC ice particles greater than 1 &mgr;m.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: December 10, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jean-Philippe Trembley, John Louis Griffiths
  • Patent number: 6487877
    Abstract: A process for producing a nitrogen-enriched vapor product from a supply of a nitrogen-rich liquid uses a purifying device and a distillation column having a distillation zone. The process includes the steps of: feeding at least a portion of the supply of the nitrogen-rich liquid to the distillation zone at a first location; feeding a stream of a gas containing nitrogen and at least one contaminant to the purifying device, wherein the gas is cooled by a cryogenic liquid whereby at least a portion of the at least one contaminant condenses, solidifies, or dissolves; eventually feeding at least a portion of the cool gas from the purifying device to the distillation zone at a second location below the first location; withdrawing a stream of the nitrogen-enriched vapor product from the distillation zone; and withdrawing a stream of an oxygen-enriched liquid from the distillation zone.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: December 3, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Louis Griffiths, Adam Adrian Brostow, Declan Patrick O'Connor, Swaninathan Sunder, Patrick Alan Houghton
  • Patent number: 6397631
    Abstract: A process for the cryogenic distillation of air uses a distillation column system having a supplemental column and a distillation unit including a lower-pressure column and a higher-pressure column. A liquid stream enriched in oxygen is withdrawn from the lower-pressure column and is eventually vaporized through indirect latent heat transfer, thereby producing a reflux stream, a portion of which is eventually sent to the lower-pressure column, the higher-pressure column, and/or the supplemental column. At least a portion of the reflux for the supplemental column is eventually derived from the distillation unit. A nitrogen-enriched liquid removed from the distillation unit is increased in pressure and is fed to the supplemental column or back to the distillation unit. An oxygen-enriched fluid from the bottom of the supplemental column is fed to the distillation unit. At least some of the nitrogen product from the supplemental column is returned to the distillation unit.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: June 4, 2002
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Louis Griffiths, Paul Higginbotham
  • Publication number: 20020000096
    Abstract: Volatile compounds (“VCs”), especially volatile organic compounds (“VOCs”), are cryogenically removed from a process gas stream (PW) by cooling the gas stream in a condenser to condense the VC to form both liquid VC and VC ice and providing a treated process gas essentially freed of the VC but containing entrained VC ice particles, which are subsequently removed by passing the treated process gas through a filter downstream of the condenser to remove at least particles of a size greater than 50 &mgr;m. The condensation can be conducted in an indirect heat exchanger or by direct contact of the process gas with a liquid cryogen such as liquid nitrogen. It is preferred that the filter removes VC ice particles greater than 1 &mgr;m.
    Type: Application
    Filed: June 12, 2001
    Publication date: January 3, 2002
    Inventors: Jean-Philippe Trembley, John Louis Griffiths
  • Patent number: 6263659
    Abstract: A method for the separation of a feed gas mixture comprising oxygen and nitrogen in which an oxidant gas and fuel are combusted in a combustion engine to generate shaft work and a hot exhaust gas, the feed gas mixture comprising oxygen and nitrogen is compressed, and the resulting compressed feed gas mixture is separated into two or more product gas streams with differing compositions. The shaft work of the combustion engine is utilized to provide at least a portion of the work required for compressing the feed gas mixture, one of the product gas streams by is heated by indirect heat exchange with the hot exhaust gas from the combustion engine, and the resulting heated product gas is work expanded to generate shaft work and yield an expanded product gas stream. The combustion engine may be a gas turbine combustion engine.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: July 24, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Lloyd Dillon, IV, John Louis Griffiths