Patents by Inventor John Lovberg

John Lovberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020187754
    Abstract: A modulator for high data rate communication at frequencies greater than 50 GHz and at data rates of about 1.25 Gbps or greater. The modulator includes a resonant LC circuit including a diode which is back-biased for “off” (i.e., no transmit) and forward biased for “on” (or transmit). In preferred embodiments the modulator is a part of high performance transceivers for wireless, millimeter wave communications links. A preferred embodiment provides a communication link of more than eight miles which operates within the 71 to 76 GHz portion of the millimeter spectrum and provides data transmission rates of 1.25 Gbps with bit error rates of less than 10−10. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth.
    Type: Application
    Filed: April 23, 2002
    Publication date: December 12, 2002
    Inventors: Richard Chedester, Randall B. Olsen, Vladimir Kolinko, John Lovberg, Kenneth Y. Tang
  • Publication number: 20020187769
    Abstract: A wireless cellular communication system in which groups of cellular base stations communicate with a central office via a narrow-band millimeter wave trunk line. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same millimeter wave spectrum. In a preferred embodiment the trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A large number of base stations are each allocated a few MHz portion of a 900 MHz bandwidth of the millimeter wave trunk line. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth.
    Type: Application
    Filed: September 14, 2001
    Publication date: December 12, 2002
    Inventors: Paul Johnson, John Lovberg, Kenneth Y. Tang, Randall Olsen, Vladimir Kolinko
  • Publication number: 20020177405
    Abstract: An apparatus and method for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link. A narrow band oscillator power source is substituted for the signal transmitting electronics associated with a first antenna and a power detector is substituted for the signal receiving electronics of associated with a second antenna. In preferred embodiments after a first alignment procedure is performed, the procedure is repeated with an oscillator power source connected to the second antenna and a power detector connected to the first antenna. In other preferred embodiments the antennas are pre-aligned using a signaling mirror or a narrow beam search light or laser. After the antennas are aligned the transceiver electronics are reconnected. In preferred embodiments communication link operates within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps.
    Type: Application
    Filed: January 5, 2002
    Publication date: November 28, 2002
    Inventors: Richard Chedester, Paul Johnson, Thomas Lambert, Randall B. Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko, George Houghton
  • Publication number: 20020176139
    Abstract: A point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps and at ranges of several miles during normal weather conditions to connect a local communication network through a SONET aggregation unit to a high speed fiber-optics network. In a preferred embodiment a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum.
    Type: Application
    Filed: December 18, 2001
    Publication date: November 28, 2002
    Inventors: Louis Slaughter, Randall Olsen, Chester Phillips, Paul Johnson, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko, Ryan Mooney
  • Publication number: 20020164960
    Abstract: A communication network including a point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps. This link is combined with a local network that includes a fixed wireless network to provide high speed digital data communication for users. In preferred embodiments the network also include Ethernet service to additional users. In these preferred embodiments many or most of these large number of users are temporary users such as participants at a conference. In a preferred embodiment, a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth.
    Type: Application
    Filed: November 13, 2001
    Publication date: November 7, 2002
    Inventors: Louis Slaughter, Chester Phillips, Paul Johnson, Randall Olsen, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko
  • Publication number: 20020164945
    Abstract: Equipment and methods for aligning the antennas of two transceivers of a point-to-point wireless millimeter wave communications link and keeping them aligned. Each of two communicating antennas is equipped with a telescopic camera connected to a processor programmed to recognize landscape images. The processors are programmed to remember the pattern of the landscape as it appears when the antennas are aligned. Each of the cameras then view the landscape periodically or continuously and if the landscape in view changes by more than a predetermined amount a signal is provided to indicate a misalignment. An operator can then take corrective action or alternatively the antenna system can be configured for remote or automatic realignment based of feedback from the camera.
    Type: Application
    Filed: January 11, 2002
    Publication date: November 7, 2002
    Inventors: Randall B. Olsen, Louis Slaughter, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko, Paul Johnson
  • Publication number: 20020164957
    Abstract: A point-to-point, wireless, millimeter wave communications link providing data transmission rates of over 1 billion bits per second (more than 1 Gbps) at ranges of several miles during normal weather conditions. In a preferred embodiment a communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing divergence of less than 10−4 steradians so that an almost unlimited number of transceivers can use the same spectrum. In a preferred embodiment the first and second spectral ranges are 92.3-93.2 GHz and 94.1-95.0 GHz. During very bad weather conditions this data link will not provide a 10−10 bit-error rate and 99.999% availability.
    Type: Application
    Filed: May 2, 2001
    Publication date: November 7, 2002
    Inventors: John Lovberg, Kenneth Y. Tang, Randall Olsen, Vladimir Kolinko
  • Publication number: 20020164959
    Abstract: A point-to-point, wireless, millimeter wave communications link at ranges of several miles during normal weather conditions. In a preferred embodiment a communication link operates within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. Antennas and rigid support towers are described to maintain beam directional stability to less than one-half the half-power beam width. In a preferred embodiment the first and second spectral ranges are 92.3-93.2 GHz and 94.1-95.
    Type: Application
    Filed: June 2, 2001
    Publication date: November 7, 2002
    Inventors: Randall Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko, George Houghton
  • Publication number: 20020164958
    Abstract: A point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps and at ranges of several miles during normal weather conditions. This link is combined with one or more digital service links that provide digital data rates to a large number of users at downstream rates of more than 1 Mbps.
    Type: Application
    Filed: June 2, 2001
    Publication date: November 7, 2002
    Inventors: Louis Slaughter, Thomas Lambert, Huan Nguyen, Randall Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko
  • Publication number: 20020165001
    Abstract: A point-to-point, wireless, millimeter wave communications links equipped with tracking antennas to maintain pencil beam contact between the links. In a preferred embodiment the antennas are flat panel tracking antennas and the communication links operate within the 92 to 95 GHz portion of the millimeter spectrum and provides data transmission rates in excess of 155 Mbps. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. In a preferred embodiment the first and second spectral ranges are 92.3-93.2 GHz and 94.1-95.0 GHz and the half power beam width is about 0.36 degrees or less.
    Type: Application
    Filed: October 30, 2001
    Publication date: November 7, 2002
    Inventors: Chester Phillips, Paul Johnson, Randall Olsen, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko
  • Publication number: 20020164951
    Abstract: A point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps and at ranges of several miles during normal weather conditions. This link is combined with an Ethernet network to provide high speed digital data communication among a large number of users. In a preferred embodiment a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum.
    Type: Application
    Filed: June 14, 2001
    Publication date: November 7, 2002
    Inventors: Louis Slaughter, Jon Hill, Thomas Lambert, Huan Nguyen, Randall Olsen, John Lovberg, Kenneth Y. Tang, Vladimir Kolinko
  • Publication number: 20020164946
    Abstract: A communication network including a point-to-point, wireless, millimeter wave trunk line communications link at high data rates in excess of 1 Gbps. This link is combined with a local network which includes at least one multi-beam antenna to provide high speed digital data communication for multiple users. In preferred embodiments the network also includes Ethernet service to additional users. In these preferred embodiments many or most of these multiple users are temporary users such as participants at a conference. In a preferred embodiment, a trunk line communication link operates within the 92 to 95 GHz portion of the millimeter spectrum. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth.
    Type: Application
    Filed: December 1, 2001
    Publication date: November 7, 2002
    Inventors: Randell Olsen, Louis Slaughter, Chester Phillips, Paul Johnson, John Lovberg, Kenneth Y. Tang, George Houghton, Vladimir Kolinko
  • Publication number: 20020165002
    Abstract: High performance transceivers for wireless, millimeter wave communications links at frequencies in excess of 70 GHz. A preferred embodiment built and tested by Applicants is described. This embodiment provides a communication link of more than eight miles which operates within the 71 to 76 GHz portion of the millimeter spectrum and provides data transmission rates of 1.25 Gbps with bit error rates of less than 10−10. A first transceiver transmits at a first bandwidth and receives at a second bandwidth both within the above spectral range. A second transceiver transmits at the second bandwidth and receives at the first bandwidth. The transceivers are equipped with antennas providing beam divergence small enough to ensure efficient spatial and directional partitioning of the data channels so that an almost unlimited number of transceivers will be able to simultaneously use the same spectrum. In a preferred embodiment the first and second spectral ranges are 71.8+/−0.63 GHz and 73.
    Type: Application
    Filed: January 31, 2002
    Publication date: November 7, 2002
    Inventors: Vladimir Kolinko, Richard Chedester, Randall B. Olsen, John Lovberg, Kenneth Y. Tang
  • Patent number: 6037908
    Abstract: A low cost microwave antenna. Microwaves are radiated from or collected by a thin layer radiating-collecting microwave guide section in which a dielectric slab is sandwiched between a metallic bottom plate and a metallic radiating-collecting cover plate. The cover plate contains a large number of slots spaced to produce outgoing or define incoming microwaves beams having directions determined: (1) by the directions of propagation of microwave radiation within the radiating-collecting microwave section and (2) by the frequency of the radiation. In a collection mode, a microwave lens focuses microwave radiation propagating in the waveguide section at focal locations which are dependent on the direction of propagation of the radiation in the waveguide. Alternatively, in a radiation mode, the lens converts microwave energy broadcast from said focal locations into parallel beams propagating in the radiating-collecting microwave guide section.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: March 14, 2000
    Assignee: Thermotrex Corporation
    Inventors: Chester C. Phillips, John Lovberg, Randall Olsen, Ri-Chee Chou
  • Patent number: 5481183
    Abstract: A broadband spectrum analyzer for radio frequency and microwave signals. The signal to be analyzed modulates an optical laser beam through an electro-optic modulator. The resultant modulated beam thus comprises light at a frequency (carrier frequency) corresponding to the wavelength of the laser beam and frequencies close to the carrier frequency corresponding to the frequencies representing the modulating signal. The modulated beam is expanded to produce a beam with light traveling in a large number of directions within a narrow angle. The expanded beam illuminates the aperture of an etalon. The etalon functions as an optical filter passing only portions of the beam which enter the etalon at an angle such that the distance traveled by the light within the etalon equals an integral number of wavelengths. Thus, different frequencies pass through the etalon at different angles. The output from the etalon is collected by a video camera for display and interpretation.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: January 2, 1996
    Inventors: Paul A. Johnson, Ri-Chee Chou, Chris A. Martin, Brett Spivey, John Lovberg
  • Patent number: 5365237
    Abstract: A camera system in which microwave radiation from objects in a field-of-view is collected by an antenna having beam directions which are a function of the beam frequency. The collected radiation is used to modulate an optical beam to impose upon the beam spectral components which are functions of the frequencies of the microwave radiation. The modulated beam is then analyzed by an optical spectrum analyzer to produce an image of objects in the field of view. In a simple embodiment of the invention a one dimensional image is produced. This one dimensional image can be converted to a two dimensional image by panning the camera system or mounting the camera on a moving platform. In this preferred embodiment the spectrum analyzer comprises an angle-frequency filter (preferably an etalon). The portion of the modulated beam passing through the etalon is directed in a number of directions, the directions being a function of the spectral components of the modulated beam.
    Type: Grant
    Filed: May 13, 1993
    Date of Patent: November 15, 1994
    Assignee: Thermo Trex Corporation
    Inventors: Paul A. Johnson, Ri-Chee Chou, Chris A. Martin, Britt Spivey, John Lovberg