Patents by Inventor John M. Beierle
John M. Beierle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240400605Abstract: Embodiments of the present disclosure relate to methods of preparation of templates for polynucleotide sequencing. In particular, the disclosure relates to linearization of clustered polynucleotides in preparation for sequencing by cleavage of one or more first strands of double-stranded polynucleotides immobilized on a solid support by a transition metal complex, for example, a palladium complex or a nickel complex. Further disclosure relate to linearization of clustered polynucleotides by cleaving one or more second strands of double double-stranded polynucleotides immobilized on a solid support comprising azobenzene linker by Na2S2O4. Nucleotides and oligonucleotides comprising a 3? phosphate moiety blocking group, and methods of removing the same using a fluoride reagent are also disclosed.Type: ApplicationFiled: August 15, 2024Publication date: December 5, 2024Inventors: Xiaolin Wu, Randall Smith, Peyton Shieh, John M. Beierle, Wayne N. George, Elliot John Lawrence, Jie Mao, Xiaohai Liu
-
Publication number: 20240377409Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.Type: ApplicationFiled: July 29, 2024Publication date: November 14, 2024Inventors: Mark S. Chee, John M. Beierle, Norihito Muranaka, Kevin L. Gunderson, Michael Phillip Weiner, Lei Shi, Robert C. James, Luca Monfregola
-
Patent number: 12130291Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.Type: GrantFiled: August 11, 2022Date of Patent: October 29, 2024Assignee: Encodia, Inc.Inventors: Mark S. Chee, John M. Beierle, Norihito Muranaka, Kevin L. Gunderson, Michael Phillip Weiner, Lei Shi, Robert C. James, Luca Monfregola
-
Patent number: 12084474Abstract: Embodiments of the present disclosure relate to methods of preparation of templates for polynucleotide sequencing. In particular, the disclosure relates to linearization of clustered polynucleotides in preparation for sequencing by cleavage of one or more first strands of double-stranded polynucleotides immobilized on a solid support by a transition metal complex, for example, a palladium complex or a nickel complex. Further disclosure relate to linearization of clustered polynucleotides by cleaving one or more second strands of double double-stranded polynucleotides immobilized on a solid support comprising azobenzene linker by Na2S2O4. Nucleotides and oligonucleotides comprising a 3? phosphate moiety blocking group, and methods of removing the same using a fluoride reagent are also disclosed.Type: GrantFiled: May 14, 2019Date of Patent: September 10, 2024Assignee: Illumina, Inc.Inventors: Xiaolin Wu, Randall Smith, Peyton Shieh, John M. Beierle, Wayne N. George, Elliot John Lawrence, Jie Mao, Xiaohai Liu
-
Publication number: 20240271191Abstract: An array includes a support including a plurality of discrete wells, a gel material positioned in each of the plurality of discrete wells, and a quality control tracer grafted to the gel material in each of the plurality of discrete wells. The quality control tracer comprises (a) a cleavable nucleotide sequence comprising a cleavage site and (b) a detectable label; and in some aspects, is a cleavable nucleotide sequence with a detectable label and a non-reactive nucleotide sequence or a primer nucleotide sequence.Type: ApplicationFiled: March 20, 2024Publication date: August 15, 2024Inventors: Peyton Shieh, John M. Beierle, Michael S. Graige, Alexander Fuhrmann, Randall Smith, Wei Wei, Naiqian Zhan
-
Publication number: 20240117418Abstract: A microarray is designed to capture one or more molecules of interest at each of a plurality of sites on a substrate. The sites comprise base pads, such as polymer base pads, that promote the attachment of the molecules at the sites. The microarray may be made by one or more patterning techniques to create a layout of base pads in a desired pattern. Further, the microarrays may include features to encourage clonality at the sites.Type: ApplicationFiled: November 13, 2023Publication date: April 11, 2024Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
-
Patent number: 11952619Abstract: An array includes a support including a plurality of discrete wells, a gel material positioned in each of the plurality of discrete wells, and a quality control tracer grafted to the gel material in each of the plurality of discrete wells. The quality control tracer comprises (a) a cleavable nucleotide sequence comprising a cleavage site and (b) a detectable label; and in some aspects, is a cleavable nucleotide sequence with a detectable label and a non-reactive nucleotide sequence or a primer nucleotide sequence.Type: GrantFiled: May 6, 2020Date of Patent: April 9, 2024Assignee: Illumina, Inc.Inventors: Peyton Shieh, John M. Beierle, Michael S. Graige, Alexander Fuhrmann, Randall Smith, Wei Wei, Naiqian Zhan
-
Patent number: 11846580Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.Type: GrantFiled: March 3, 2021Date of Patent: December 19, 2023Assignees: Illumina, Inc., Illumina Cambridge LimitedInventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
-
Patent number: 11834704Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.Type: GrantFiled: December 7, 2020Date of Patent: December 5, 2023Assignee: Illumina, Inc.Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
-
Publication number: 20230340593Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods.Type: ApplicationFiled: May 18, 2023Publication date: October 26, 2023Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
-
Patent number: 11782062Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.Type: GrantFiled: February 8, 2023Date of Patent: October 10, 2023Assignee: Encodia, Inc.Inventors: Mark S. Chee, John M. Beierle, Norihito Muranaka, Kevin L. Gunderson, Michael Phillip Weiner, Lei Shi, Robert C. James, Luca Monfregola
-
Publication number: 20230236198Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.Type: ApplicationFiled: February 8, 2023Publication date: July 27, 2023Applicant: Encodia, Inc.Inventors: Mark S. CHEE, John M. BEIERLE, Norihito MURANAKA, Kevin L. GUNDERSON, Michael Phillip WEINER, Lei SHI, Robert C. JAMES, Luca MONFREGOLA
-
Patent number: 11692223Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods, including methods for modifying immobilized capture primers comprising: a) contacting a substrate comprising a plurality of immobilized capture primers with a plurality of template nucleic acids under conditions sufficient for hybridization to produce one or more immobilized template nucleic acids, and b) extending one or more immobilized capture primers to produce one or more immobilized extension products complementary to the one or more template nucleic acid.Type: GrantFiled: April 10, 2020Date of Patent: July 4, 2023Assignee: Illumina Cambridge LimitedInventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
-
Publication number: 20230168254Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.Type: ApplicationFiled: August 11, 2022Publication date: June 1, 2023Applicant: Encodia, Inc.Inventors: Mark S. Chee, John M. BEIERLE, Norihito MURANAKA, Kevin L. GUNDERSON, Michael Phillip WEINER, Lei SHI, Robert C. JAMES, Luca MONFREGOLA
-
Patent number: 11513126Abstract: Kits and methods of using the kits for analyzing macromolecules, including peptides, polypeptides, and proteins, employing nucleic acid encoding are disclosed. The sample analysis kits employ nucleic acid encoding and/or nucleic acid recording of a molecular interaction and/or reaction, such as recognition events (e.g., between an antigen and an antibody, between a modified terminal amino acid residue, or between a small molecule or peptide therapeutic and a target, etc.). Additional barcoding reagents, such as those for cycle-specific barcoding (e.g., “clocking”), compartment barcoding, combinatorial barcoding, spatial barcoding, or any combination thereof, may be included in the kits. The sample may comprise macromolecules, including peptides, polypeptides, and proteins, and the recording may generate molecular interaction and/or reaction information, and/or polypeptide sequence information.Type: GrantFiled: October 31, 2018Date of Patent: November 29, 2022Assignee: Encodia, Inc.Inventors: Mark S. Chee, John M. Beierle, Norihito Muranaka, Kevin L. Gunderson, Michael Phillip Weiner, Lei Shi, Robert C. James, Luca Monfregola
-
Patent number: 11060135Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.Type: GrantFiled: August 30, 2018Date of Patent: July 13, 2021Assignee: Illumina, Inc.Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
-
Publication number: 20210208055Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.Type: ApplicationFiled: March 3, 2021Publication date: July 8, 2021Inventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
-
Publication number: 20210108258Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.Type: ApplicationFiled: December 7, 2020Publication date: April 15, 2021Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
-
Patent number: 10955332Abstract: A flow cell package includes first and second surface-modified patterned wafers and a spacer layer. The first surface-modified patterned wafer includes first depressions separated by first interstitial regions, a first functionalized molecule bound to a first silane or silane derivative in at least some of the first depressions, and a first primer grafted to the first functionalized molecule in the at least some of the first depressions. The second surface-modified patterned wafer includes second depressions separated by second interstitial regions, a second functionalized molecule bound to a second silane or silane derivative in at least some of the second depressions, and a second primer grafted to the second functionalized molecule in the at least some of the second depressions. The spacer layer bonds at least some first interstitial regions to at least some second interstitial regions, and at least partially defines respective fluidic chambers of the flow cell package.Type: GrantFiled: December 20, 2017Date of Patent: March 23, 2021Assignees: Illumina, Inc., Illumina Cambridge LimitedInventors: James Tsay, Anmiv Prabhu, David Heiner, Edwin Li, Alexandre Richez, John M. Beierle, Kevan Samiee, Kristina Munoz, Leonid Malevanchik, Ludovic Vincent, Naiqian Zhan, Peyton Shieh, Robert Yang, Samantha Schmitt, Sang Park, Scott Bailey, Sean M. Ramirez, Sunmin Ahn, Valerie Uzzell, Wei Wei, Yuxiang Huang, Tyler Jamison Dill
-
Patent number: 10830781Abstract: Detection apparatus includes a microfluorometer having an objective, an excitation radiation source, and a detector. The detection apparatus also includes a fluidic system for delivering reagents from a reagent cartridge to a flow cell. The fluidic system includes a manifold body having a plurality of fluidic channels configured for fluid communication between the reagent cartridge and the flow cell. The fluidic system also includes a plurality of reagent sippers. The fluidic system also includes a valve configured to mediate fluid between reagent reservoirs and the flow cell. The detection apparatus also includes a flow cell latch clamp module having a clamp cover for holding the flow cell. The objective is configured to direct excitation radiation from the radiation source to the flow cell and to direct emission from the flow cell to the detector. The microfluorometer is movable to acquire wide-field images of different areas of the flow cell.Type: GrantFiled: March 26, 2018Date of Patent: November 10, 2020Assignees: ILLUMINA, INC., ILLUMINA SINGAPORE PTE LTDInventors: Beng Keong Ang, Heng Kuang Cheng, John M. Beierle, Bradley Kent Drews, David Kaplan