Patents by Inventor John M. Brandner

John M. Brandner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110082068
    Abstract: Methods of making a (e.g. dilute) cleaning solution from a hydrogel cleaning concentrate, packages of hydrogel cleaning concentrate, and methods of making a hydrogel cleaning concentrate are described.
    Type: Application
    Filed: June 12, 2009
    Publication date: April 7, 2011
    Inventors: Caroline M. Ylitalo, Robin E. Wright, Sonja K. Belgrade, Mitchell T. Johnson, Richard L. Walter, John M. Brandner, Narina Y. Stepanova, James W. Zurawski
  • Publication number: 20110074060
    Abstract: A molded respirator is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled continuous monocomponent polymeric microfibers and larger size fibers of the same polymeric composition. The respirator is a cup-shaped porous monocomponent monolayer matrix whose matrix fibers are bonded to one another at least some points of fiber intersection. The matrix has a King Stiffness greater than 1 N. The respirator may be formed without requiring stiffening layers, bicomponent fibers, or other reinforcement in the filter media layer.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 31, 2011
    Inventors: Seyed A. Angadjivand, Andrew R. Fox, John D. Stelter, Timothy J. Lindquist, John M. Brandner, James E. Springett
  • Patent number: 7902096
    Abstract: A porous monocomponent nonwoven web contains a bimodal mass fraction/fiber size mixture of intermingled continuous microfibers and larger size fibers of the same polymeric composition. There are at least five times as many microfibers as larger size fibers, and a histogram of the mass fraction of fibers vs. fiber size exhibits a larger size fiber mode greater than 10 ?m. The web may be made by flowing fiber-forming material through a die cavity having larger size orifices and at least five times as many smaller size orifices to form filaments, attenuating the filaments into fibers and collecting the attenuated fibers to form the nonwoven web. The web is especially well suited to the manufacture of self-supporting three dimensional articles such as molded cup-shaped respirators and pleated air filters.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: March 8, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: John M. Brandner, William J. Kopecky, Seyed A. Angadjivand, James E. Springett, Timothy J. Lindquist
  • Patent number: 7858163
    Abstract: A molded respirator is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled continuous monocomponent polymeric microfibers and larger size fibers of the same polymeric composition. The respirator is a cup-shaped porous monocomponent monolayer matrix whose matrix fibers are bonded to one another at at least some points of fiber intersection. The matrix has a King Stiffness greater than 1 N. The respirator may be formed without requiring stiffening layers, bicomponent fibers, or other reinforcement in the filter media layer.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 28, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, Andrew R. Fox, John D. Stelter, Timothy J. Lindquist, John M. Brandner, James E. Springett
  • Publication number: 20100229516
    Abstract: A pleated filter is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition. Rows of pleats are formed in the nonwoven web, and the pleated web is cut to a desired size and shape to provide a filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at least some points of fiber intersection and having an average initial submicron efficiency of at least 15% at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers or other reinforcing measures in the filter media layer.
    Type: Application
    Filed: May 27, 2010
    Publication date: September 16, 2010
    Inventors: Andrew R. Fox, John D. Stelter, Seyed A. Angadjivand, Timothy J. Lindquist, John M. Brandner, James E. Springett
  • Publication number: 20100201041
    Abstract: A porous monocomponent nonwoven web contains a bimodal mass fraction/fiber size mixture of intermingled continuous microfibers and larger size fibers of the same polymeric composition. There are at least five times as many microfibers as larger size fibers, and a histogram of the mass fraction of fibers vs. fiber size exhibits a larger size fiber mode greater than 10 ?m. The web may be made by flowing fiber-forming material through a die cavity having larger size orifices and at least five times as many smaller size orifices to form filaments, attenuating the filaments into fibers and collecting the attenuated fibers to form the nonwoven web. The web is especially well suited to the manufacture of self-supporting three dimensional articles such as molded cup-shaped respirators and pleated air filters.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 12, 2010
    Inventors: John M. Brandner, William J. Kopecky, Seyed A. Angadjivand, James E. Springett, Timothy J. Lindquist
  • Patent number: 7754041
    Abstract: A pleated filter is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition. Rows of pleats are formed in the nonwoven web, and the pleated web is cut to a desired size and shape to provide a filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15% at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers or other reinforcing measures in the filter media layer.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: July 13, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, John D. Stelter, Seyed A. Angadjivand, Timothy J. Lindquist, John M. Brandner, James E. Springett
  • Publication number: 20100050582
    Abstract: A filter element in the form of a nonwoven self-supporting filtration web having rows of folded or corrugated spaced-apart pleats, the web containing continuous thermoplastic fibers a majority of which are aligned at 90°±20° with respect to the row direction. The filter element can be made by forming rows of pleats in such a nonwoven web and cutting the web to a desired size and shape. The filter elements can provide improved mechanical and filtration properties and can exhibit reduced susceptibility to pleat deformation and the loss of space between pleats.
    Type: Application
    Filed: September 3, 2009
    Publication date: March 4, 2010
    Inventors: Douglas C. Sundet, Rahul R. Shah, John M. Brandner, Tien T. Wu
  • Publication number: 20090315224
    Abstract: Shaped filtration articles are made from a monocomponent nonwoven web formed by flowing first and second fiber-forming materials of the same polymeric composition through first and second die cavities in respective fluid communication with first and second sets of orifices in a meltblowing die tip. The first fiber-forming material flows at a lesser flow rate or viscosity through the first die cavity and first set of orifices to form a set of smaller size filaments and the second fiber-forming material flows at a greater flow rate or viscosity through the second die cavity and second set of orifices to form a set of larger size filaments. The collected nonwoven web contains a meltblown bimodal mass fraction/fiber size mixture of intermingled continuous microfibers and larger size fibers of the same polymeric composition.
    Type: Application
    Filed: July 17, 2007
    Publication date: December 24, 2009
    Inventors: Seyed A. Angadjivand, Marvin E. Jones, James E. Springett, James E. Springett, John M. Brandner, Timothy J. Lindquist
  • Patent number: 7622063
    Abstract: A filter element in the form of a nonwoven self-supporting filtration web having rows of folded or corrugated spaced-apart pleats, the web containing continuous thermoplastic fibers a majority of which are aligned at 90°±20° with respect to the row direction. The filter element can be made by forming rows of pleats in such a nonwoven web and cutting the web to a desired size and shape. The filter elements can provide improved mechanical and filtration properties and can exhibit reduced susceptibility to pleat deformation and the loss of space between pleats.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: November 24, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Douglas C Sundet, Rahul R. Shah, John M. Brandner, Tien T. Wu
  • Publication number: 20080318024
    Abstract: A porous nonwoven web and method of making are disclosed, wherein the web contains meltblown fibers and staple fibers. The meltblown fibers may be present as a bimodal mixture of microfibers and mesofibers, and comprise an intermingled mixture with staple fibers further intermingled therein.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 25, 2008
    Inventors: Seyed A. Angadjivand, John M. Brandner, James E. Springett
  • Publication number: 20080318014
    Abstract: A molded respirator and method of making are disclosed, wherein the molded respirator is made from a porous nonwoven web containing meltblown fibers and staple fibers. The meltblown fibers may be present as a bimodal mixture of microfibers and mesofibers, and comprise an intermingled mixture with staple fibers further intermingled therein. The molded respirator may also contain at least one secondary filtration layer.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 25, 2008
    Inventors: Seyed A. Angadjivand, John M. Brandner, James E. Springett
  • Publication number: 20080315454
    Abstract: A method of making a nonwoven web is described, wherein the web contains meltblown fibers and staple fibers. The meltblown fibers may be present as a bimodal mixture of microfibers and mesofibers, and comprise an intermingled mixture with staple fibers further intermingled therein.
    Type: Application
    Filed: June 22, 2007
    Publication date: December 25, 2008
    Inventors: Seyed A. Angadjivand, John M. Brandner, James E. Springett
  • Publication number: 20080026659
    Abstract: A porous monocomponent nonwoven web contains a bimodal mass fraction/fiber size mixture of intermingled continuous microfibers and larger size fibers of the same polymeric composition. There are at least five times as many microfibers as larger size fibers, and a histogram of the mass fraction of fibers vs. fiber size exhibits a larger size fiber mode greater than 10 ?m. The web may be made by flowing fiber-forming material through a die cavity having larger size orifices and at least five times as many smaller size orifices to form filaments, attenuating the filaments into fibers and collecting the attenuated fibers to form the nonwoven web. The web is especially well suited to the manufacture of self-supporting three dimensional articles such as molded cup-shaped respirators and pleated air filters.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Inventors: John M. Brandner, William J. Kopecky, Seyed A. Angadjivand, James E. Springett, Timothy J. Lindquist
  • Publication number: 20080022643
    Abstract: A pleated filter is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled larger size and smaller size continuous monocomponent polymeric fibers of the same polymeric composition. Rows of pleats are formed in the nonwoven web, and the pleated web is cut to a desired size and shape to provide a filter element containing a self-supporting porous monocomponent monolayer matrix of fibers bonded to one another at at least some points of fiber intersection and having an average initial submicron efficiency of at least 15% at a 1.52 meters/sec face velocity. The filter element is deformation resistant without requiring stiffening layers, bicomponent fibers or other reinforcing measures in the filter media layer.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Inventors: Andrew R. Fox, John D. Stelter, Seyed A. Angadjivand, Timothy J. Lindquist, John M. Brandner, James E. Springett
  • Publication number: 20080026173
    Abstract: A molded respirator is made from a monocomponent monolayer nonwoven web containing a bimodal mass fraction/fiber size mixture of intermingled continuous monocomponent polymeric microfibers and larger size fibers of the same polymeric composition. The respirator is a cup-shaped porous monocomponent monolayer matrix whose matrix fibers are bonded to one another at at least some points of fiber intersection. The matrix has a King Stiffness greater than 1 N. The respirator may be formed without requiring stiffening layers, bicomponent fibers, or other reinforcement in the filter media layer.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Inventors: Seyed A. Angadjivand, Andrew R. Fox, John D. Stelter, Timothy J. Lindquist, John M. Brandner, James E. Springett
  • Publication number: 20080011303
    Abstract: A flat-fold respirator is made from a stiff filtration panel joined to the remainder of the respirator through at least one line of demarcation. The panel contains a porous monocomponent monolayer nonwoven web that contains charged intermingled continuous monocomponent polymeric fibers of the same polymeric composition and that has sufficient basis weight or inter-fiber bonding so that the web exhibits a Gurley Stiffness greater than 200 mg and the respirator exhibits less than 20 mm H2O pressure drop. The respirator may be formed without requiring additional stiffening layers, bicomponent fibers, or other reinforcement and can be flat-folded for storage. Scrap from the manufacturing process may be recycled to make additional stiff filtration panel web.
    Type: Application
    Filed: March 29, 2007
    Publication date: January 17, 2008
    Inventors: Seyed A. Angadjivand, James E. Springett, John M. Brandner, Marvin E. Jones, Andrew R. Fox, Michael R. Berrigan, John D. Stelter
  • Patent number: 6858297
    Abstract: Nonwoven webs having substantially aligned fibers can be formed in an apparatus having a direction of motion corresponding to the direction of web formation. The web is formed in the presence of at least one secondary fluid stream that oscillates the filaments or resulting attenuated fibers to and fro generally in and against the direction of motion so that a majority of the collected fibers are aligned within ±20° of the direction of motion and fibers having lengths of about 1-10 cm can be teased from the web. The resulting nonwoven webs are especially useful for forming pleated filtration media having pleats generally transverse to the direction of motion.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: February 22, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Rahul Shah, Douglas C. Sundet, Tien T. Wu, John M. Brandner
  • Patent number: 5766387
    Abstract: A barrier fabric laminate for use as a coating for a gel filled article is provided. The barrier fabric laminate comprises a fluid impermeable film and a polyurethane nonwoven web which has a friction value of less than 200 g and a fabric hand of less than 200 g. The polyurethane web is formed of fibers of less than about 50 .mu.m on average and preferably is formed with a fluorochemical melt additive by sequentially melt blowing the polyurethane web on a heated collecting drum and laminated by a nip formed by a heated nip roller and the collecting drum.
    Type: Grant
    Filed: October 25, 1996
    Date of Patent: June 16, 1998
    Inventors: Robert J. Wolf, Scott M. Purrington, John M. Brandner, David A. Olson, John F. Reed
  • Patent number: 5706804
    Abstract: A face mask including a face-contacting layer, an outer cover layer, a polymeric microfiber mat disposed between the face-contacting layer and the outer cover layer, and a non-woven fibrous mat disposed between the face-contacting layer and the outer cover layer. The non-woven fibrous mat includes polymeric fibers and a surface energy reducing agent. The face-contacting layer, the cover layer, the polymeric microfiber mat, and the non-woven fibrous mat cooperate with each other to allow gas to pass through the mask while inhibiting the passage of liquid through the mask.
    Type: Grant
    Filed: January 31, 1997
    Date of Patent: January 13, 1998
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Nicholas R. Baumann, John M. Brandner, John A. Temperante, Shannon Dowdell, Michael D. Romano, Scott J. Tuman, Matthew T. Scholz