Patents by Inventor John M. Clark

John M. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240395196
    Abstract: An exhaust gas system includes: an engine-turbine exhaust gas conduit configured to receive exhaust gas from an engine; a turbocharger including a turbine coupled to the engine-turbine exhaust gas conduit; an injection housing coupled to the turbine and centered on an injection housing axis; a dosing module coupled to the injection housing and including an injector configured to dose reductant into the injection housing, the injector centered on an injector axis; and a bypass system including: a bypass inlet conduit coupled to the engine-turbine exhaust gas conduit, a bypass valve coupled to the bypass inlet conduit, and a bypass outlet conduit coupled to the bypass valve, the bypass outlet conduit centered on a bypass outlet conduit axis.
    Type: Application
    Filed: August 8, 2024
    Publication date: November 28, 2024
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Colin L. Norris, Matthew Henry, Stephen W. Caddy, Randolph G. Zoran, Stephen M. Holl, Matthew Robert Brookes, Jamie Archer, John M. Clark
  • Patent number: 12087220
    Abstract: An exhaust gas system includes an engine-turbine exhaust gas conduit, a turbocharger, a turbine-housing exhaust gas conduit, an injection housing, a dosing module, and a bypass system. The engine-turbine exhaust gas conduit is configured to receive exhaust gas. The turbocharger includes a turbine. The turbine is coupled to the engine-turbine exhaust gas conduit. The turbine-housing exhaust gas conduit is coupled to the turbine. The injection housing is coupled to the turbine-housing exhaust gas conduit and centered on an injection housing axis. The dosing module is coupled to the injection housing and includes an injector. The injector is configured to dose reductant into the injection housing. The injector is centered on an injector axis. The bypass system includes a bypass inlet conduit, a bypass valve, and a bypass outlet conduit. The bypass inlet conduit is coupled to the engine-turbine exhaust gas conduit.
    Type: Grant
    Filed: August 17, 2023
    Date of Patent: September 10, 2024
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Colin L. Norris, Matthew Henry, Stephen W. Caddy, Randolph G. Zoran, Stephen M. Holl, Matthew Robert Brookes, Jamie Archer, John M. Clark
  • Publication number: 20230392531
    Abstract: An exhaust gas system includes an engine-turbine exhaust gas conduit, a turbocharger, a turbine-housing exhaust gas conduit, an injection housing, a dosing module, and a bypass system. The engine-turbine exhaust gas conduit is configured to receive exhaust gas. The turbocharger includes a turbine. The turbine is coupled to the engine-turbine exhaust gas conduit. The turbine-housing exhaust gas conduit is coupled to the turbine. The injection housing is coupled to the turbine-housing exhaust gas conduit and centered on an injection housing axis. The dosing module is coupled to the injection housing and includes an injector. The injector is configured to dose reductant into the injection housing. The injector is centered on an injector axis. The bypass system includes a bypass inlet conduit, a bypass valve, and a bypass outlet conduit. The bypass inlet conduit is coupled to the engine-turbine exhaust gas conduit.
    Type: Application
    Filed: August 17, 2023
    Publication date: December 7, 2023
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Colin L. Norris, Matthew Henry, Stephen W. Caddy, Randolph G. Zoran, Stephen M. Holl, Matthew Robert Brookes, Jamie Archer, John M. Clark
  • Patent number: 11808192
    Abstract: An exhaust gas system includes an engine-turbine exhaust gas conduit, a turbocharger, a turbine-housing exhaust gas conduit, an injection housing, a dosing module, and a bypass system. The engine-turbine exhaust gas conduit is configured to receive exhaust gas. The turbocharger includes a turbine. The turbine is coupled to the engine-turbine exhaust gas conduit. The turbine-housing exhaust gas conduit is coupled to the turbine. The injection housing is coupled to the turbine-housing exhaust gas conduit and centered on an injection housing axis. The dosing module is coupled to the injection housing and includes an injector. The injector is configured to dose reductant into the injection housing. The injector is centered on an injector axis. The bypass system includes a bypass inlet conduit, a bypass valve, and a bypass outlet conduit. The bypass inlet conduit is coupled to the engine-turbine exhaust gas conduit.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: November 7, 2023
    Assignee: CUMMINS EMISSION SOLUTIONS INC.
    Inventors: Colin L. Norris, Matthew Henry, Stephen W. Caddy, Randolph G. Zoran, Stephen M. Holl, Matthew Robert Brookes, Jamie Archer, John M. Clark
  • Publication number: 20210047957
    Abstract: An exhaust gas system includes an engine-turbine exhaust gas conduit, a turbocharger, a turbine-housing exhaust gas conduit, an injection housing, a dosing module, and a bypass system. The engine-turbine exhaust gas conduit is configured to receive exhaust gas. The turbocharger includes a turbine. The turbine is coupled to the engine-turbine exhaust gas conduit. The turbine-housing exhaust gas conduit is coupled to the turbine. The injection housing is coupled to the turbine-housing exhaust gas conduit and centered on an injection housing axis. The dosing module is coupled to the injection housing and includes an injector. The injector is configured to dose reductant into the injection housing. The injector is centered on an injector axis. The bypass system includes a bypass inlet conduit, a bypass valve, and a bypass outlet conduit. The bypass inlet conduit is coupled to the engine-turbine exhaust gas conduit.
    Type: Application
    Filed: July 30, 2020
    Publication date: February 18, 2021
    Applicant: Cummins Emission Solutions Inc.
    Inventors: Colin L. Norris, Matthew Henry, Stephen W. Caddy, Randolph G. Zoran, Stephen M. Holl, Matthew Robert Brookes, Jamie Archer, John M. Clark
  • Publication number: 20180243165
    Abstract: A spa assembly includes a base pan; a frame assembly; and a spa shell supported on the base pan and the frame assembly. The spa shell includes a bottom and at least one side defining an open internal volume, an interior surface oriented toward the open internal volume, an opposing exterior surface, and a rim surrounding the at least one side, the rim defining an internal cavity. The exterior surface of the bottom of the spa shell has a foam material applied thereon. The foam material applied to the bottom of the spa shell and the base pan comprise corresponding interlocking features that align the spa shell within the base pan. The internal cavity of the rim has the foam material applied thereto. The foam material in the rim has a groove formed therein, the groove being configured to receive the frame assembly.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 30, 2018
    Inventors: Brian Koops, John M. Clark, Matthew L. Breithaupt, Adrian Alfaro
  • Patent number: 9951679
    Abstract: A highly-efficient, yet simply constructed internal combustion engine includes an intake cylinder to accommodate intake and pre-compression of an oxidizing agent, a combustion cylinder to accommodate a further compression of the oxidizing agent, an injection and ignition of fuel, and a partial expansion of combustion gases produced by the ignition of fuel; and an exhaust cylinder to accommodate a further expansion of the combustion gases and subsequent exhausting of the further expanded combustion gases. A reciprocating piston is inside each of the intake, combustion and exhaust cylinders and a crankshaft is coupled to the reciprocating pistons. A first transfer passage facilitates flow of the pre-compressed oxidizing agent from the intake cylinder to the combustion cylinder and a second transfer passage facilitates flow of the partially-expanded combustion gases from the combustion cylinder to the exhaust cylinder.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: April 24, 2018
    Assignee: Motiv Engines LLC
    Inventor: John M. Clarke
  • Publication number: 20160222873
    Abstract: A highly-efficient, yet simply constructed internal combustion engine includes an intake cylinder to accommodate intake and pre-compression of an oxidizing agent, a combustion cylinder to accommodate a further compression of the oxidizing agent, an injection and ignition of fuel, and a partial expansion of combustion gases produced by the ignition of fuel; and an exhaust cylinder to accommodate a further expansion of the combustion gases and subsequent exhausting of the further expanded combustion gases. A reciprocating piston is inside each of the intake, combustion and exhaust cylinders and a crankshaft is coupled to the reciprocating pistons. A first transfer passage facilitates flow of the pre-compressed oxidizing agent from the intake cylinder to the combustion cylinder and a second transfer passage facilitates flow of the partially-expanded combustion gases from the combustion cylinder to the exhaust cylinder.
    Type: Application
    Filed: April 11, 2016
    Publication date: August 4, 2016
    Inventor: John M. Clarke
  • Patent number: 9334844
    Abstract: A highly-efficient, yet simply constructed internal combustion engine includes an intake cylinder to accommodate intake and pre-compression of an oxidizing agent, a combustion cylinder to accommodate a further compression of the oxidizing agent, an injection and ignition of fuel, and a partial expansion of combustion gases produced by the ignition of fuel; and an exhaust cylinder to accommodate a further expansion of the combustion gases and subsequent exhausting of the further expanded combustion gases. A reciprocating piston is inside each of the intake, combustion and exhaust cylinders and a crankshaft is coupled to the reciprocating pistons. A first transfer passage facilitates flow of the pre-compressed oxidizing agent from the intake cylinder to the combustion cylinder and a second transfer passage facilitates flow of the partially-expanded combustion gases from the combustion cylinder to the exhaust cylinder.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: May 10, 2016
    Assignee: Motiv Engines LLC
    Inventor: John M. Clarke
  • Publication number: 20150090224
    Abstract: A highly-efficient, yet simply constructed internal combustion engine includes an intake cylinder to accommodate intake and pre-compression of an oxidizing agent, a combustion cylinder to accommodate a further compression of the oxidizing agent, an injection and ignition of fuel, and a partial expansion of combustion gases produced by the ignition of fuel; and an exhaust cylinder to accommodate a further expansion of the combustion gases and subsequent exhausting of the further expanded combustion gases. A reciprocating piston is inside each of the intake, combustion and exhaust cylinders and a crankshaft is coupled to the reciprocating pistons. A first transfer passage facilitates flow of the pre-compressed oxidizing agent from the intake cylinder to the combustion cylinder and a second transfer passage facilitates flow of the partially-expanded combustion gases from the combustion cylinder to the exhaust cylinder.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: Motiv Engines LLC
    Inventor: John M. Clarke
  • Patent number: 8813694
    Abstract: An engine has an engine casing with one or more surfaces that define a first substantially tubular coolant passage (e.g., a coolant inlet passage) with an open end that opens inside the engine casing. A first piston assembly is inside the engine casing and configured to reciprocate relative to the engine casing when the engine is operating. The first piston assembly has one or more surfaces that define a piston coolant jacket inside the first piston assembly. The piston coolant jacket has a first opening at an outer surface of the first piston assembly. A first fluid communication conduit extends between the engine casing and the first piston assembly and has a first end that is rigidly coupled to the first opening in the piston coolant jacket and a second end that extends through the open end of the first substantially tubular coolant passage in the engine casing.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: August 26, 2014
    Assignee: Motiv Engines, LLC
    Inventor: John M. Clarke
  • Patent number: 8763593
    Abstract: An engine has a stationary first body portion with one or more surfaces that define a portion of a fluid flow path through the engine. The stationary first body portion has a substantially cylindrical outer surface. A first piston assembly is configured to reciprocate relative to the stationary first body portion and to accommodate one or more second piston assemblies reciprocating inside and relative to the first piston assembly. The first piston assembly has an extension portion. The extension portion has a substantially cylindrical inner surface that defines a space to receive the stationary first body portion. One or more sealing elements are between the substantially cylindrical outer surface of the stationary first body portion and the extension portion of the first piston assembly.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: July 1, 2014
    Assignee: Motiv Engines, LLC
    Inventor: John M. Clarke
  • Patent number: 8671922
    Abstract: An engine includes an engine casing and a first piston configured to reciprocate relative to the engine casing. The first piston has a wall that defines a substantially cylindrical chamber. One or more second pistons are configured to reciprocate inside the substantially cylindrical chamber. A combustion chamber intake port and a combustion chamber exhaust port extend through the wall. A shutter is outside the wall and is movable between a first position substantially blocking fluid flow through the combustion chamber exhaust port but not blocking fluid flow through the combustion chamber intake port and a second position substantially blocking fluid flow through the combustion chamber intake port but not blocking flow through the combustion chamber exhaust port. An actuator causes the shutter to move between the first position and the second position in response to the first piston reciprocating relative to the engine casing.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: March 18, 2014
    Assignee: Motiv Engines LLC
    Inventor: John M. Clarke
  • Publication number: 20130319368
    Abstract: An engine includes an engine casing and a first piston configured to reciprocate relative to the engine casing. The first piston has a wall that defines a substantially cylindrical chamber. One or more second pistons are configured to reciprocate inside the substantially cylindrical chamber. A combustion chamber intake port and a combustion chamber exhaust port extend through the wall. A shutter is outside the wall and is movable between a first position substantially blocking fluid flow through the combustion chamber exhaust port but not blocking fluid flow through the combustion chamber intake port and a second position substantially blocking fluid flow through the combustion chamber intake port but not blocking flow through the combustion chamber exhaust port. An actuator causes the shutter to move between the first position and the second position in response to the first piston reciprocating relative to the engine casing.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: Motiv Engines LLC
    Inventor: John M. Clarke
  • Publication number: 20130319385
    Abstract: An engine has a stationary first body portion with one or more surfaces that define a portion of a fluid flow path through the engine. The stationary first body portion has a substantially cylindrical outer surface. A first piston assembly is configured to reciprocate relative to the stationary first body portion and to accommodate one or more second piston assemblies reciprocating inside and relative to the first piston assembly. The first piston assembly has an extension portion. The extension portion has a substantially cylindrical inner surface that defines a space to receive the stationary first body portion. One or more sealing elements are between the substantially cylindrical outer surface of the stationary first body portion and the extension portion of the first piston assembly.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: Motiv Engines LLC
    Inventor: John M. Clarke
  • Publication number: 20130319351
    Abstract: An engine has an engine casing with one or more surfaces that define a first substantially tubular coolant passage (e.g., a coolant inlet passage) with an open end that opens inside the engine casing. A first piston assembly is inside the engine casing and configured to reciprocate relative to the engine casing when the engine is operating. The first piston assembly has one or more surfaces that define a piston coolant jacket inside the first piston assembly. The piston coolant jacket has a first opening at an outer surface of the first piston assembly. A first fluid communication conduit extends between the engine casing and the first piston assembly and has a first end that is rigidly coupled to the first opening in the piston coolant jacket and a second end that extends through the open end of the first substantially tubular coolant passage in the engine casing.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: Motiv Engines LLC
    Inventor: John M. Clarke
  • Patent number: 8381691
    Abstract: An engine includes a first piston with surfaces that define a substantially cylindrical chamber inside the first piston and a passage into the substantially cylindrical chamber. One or more second pistons are arranged to reciprocate inside the substantially cylindrical chamber and to define, in cooperation with the substantially cylindrical chamber, a combustion chamber. A fuel injector extends at least partially through the passage in the first piston to inject fuel into the combustion chamber. The first piston is arranged to move in a reciprocating manner relative to the fuel injector.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: February 26, 2013
    Assignee: Motiv Engines, LLC
    Inventor: John M. Clarke
  • Publication number: 20110100334
    Abstract: An engine includes a first piston with surfaces that define a substantially cylindrical chamber inside the first piston and a passage into the substantially cylindrical chamber. One or more second pistons are arranged to reciprocate inside the substantially cylindrical chamber and to define, in cooperation with the substantially cylindrical chamber, a combustion chamber. A fuel injector extends at least partially through the passage in the first piston to inject fuel into the combustion chamber. The first piston is arranged to move in a reciprocating manner relative to the fuel injector.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicants: Motiv Engines LLC, National Institute for Strategic Technology Aquisition and Commercialization
    Inventor: John M. Clarke
  • Patent number: 7604131
    Abstract: A storage rack that can be mounted to the ceiling to allow easy loading and unloading of multiple items, such as bikes. The stored items ride along a longitudinal track which allows a single item, in a row of many, to be removed without disturbing the remaining items.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: October 20, 2009
    Inventors: John M. Clark, Stephen A. Smith
  • Publication number: 20090222506
    Abstract: A method and system for metering and analyzing usage and performance data of virtualized compute and network infrastructures is disclosed. The processing functions of the metered data are divided into “processing units” that are configured to execute on a server (or plurality of interconnected servers). Each processing unit receives input from an upstream processing unit, and processes the metered data to produce output for a downstream processing unit. The types of processing units, as well as the order of the processing units is user-configurable (e.g. via XML file), thus eliminating the need to modify source code of the data processing application itself, thereby saving considerable time, money, and development resources required to manage the virtualized compute and network infrastructure.
    Type: Application
    Filed: January 20, 2009
    Publication date: September 3, 2009
    Applicant: EVIDENT SOFTWARE, INC.
    Inventors: Donald C. Jeffery, John M. Clark, Scott T. Frenkiel, Ching-Cheng Chen, Ivan C. Ho