Patents by Inventor John M. Cleary

John M. Cleary has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11761086
    Abstract: Cobalt precursors are described, having application for vapor deposition of cobalt on substrates, such as in atomic layer deposition (ALD) and chemical vapor deposition (CVD) processes for forming interconnects, capping structures, and bulk cobalt conductors, in the manufacture of integrated circuitry and thin film products.
    Type: Grant
    Filed: February 19, 2015
    Date of Patent: September 19, 2023
    Assignee: ENTEGRIS, INC.
    Inventors: Thomas H. Baum, Scott L. Battle, John M. Cleary, David W. Peters, Philip S.H. Chen
  • Patent number: 10895010
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: January 19, 2021
    Assignee: ENTEGRIS, INC.
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Patent number: 10526697
    Abstract: A solid source material is described for forming a tungsten-containing film. The solid source material is tungsten hexacarbonyl, wherein content of molybdenum is less than 1000 ppm. Such solid source material may be formed by a process including provision of particulate tungsten hexacarbonyl raw material of particles of size less than 5 mm, wherein particles of size greater than 1.4 mm are less than 15% of the particles, and wherein content of molybdenum is less than 1000 ppm, and sintering the particulate tungsten hexacarbonyl raw material at temperature below 100° C. to produce the solid source material as a sintered solid.
    Type: Grant
    Filed: February 28, 2016
    Date of Patent: January 7, 2020
    Assignee: ENTEGRIS, INC.
    Inventors: Thomas H. Baum, Robert L. Wright, Jr., Scott L. Battle, John M. Cleary
  • Patent number: 10392700
    Abstract: Vaporizers are described, suited for vaporizing a vaporizable solid source materials to form vapor for subsequent use, e.g., a deposition of metal from organometallic source material vapor on a substrate for manufacture of integrated circuitry, LEDs, photovoltaic panels, and the like. Methods are described of fabricating such vaporizers, including methods of reconfiguring up-flow vaporizers for down-flow operation to accommodate higher flow rate solid delivery of source material vapor in applications requiring same.
    Type: Grant
    Filed: March 28, 2015
    Date of Patent: August 27, 2019
    Assignee: ENTEGRIS, INC.
    Inventors: Thomas H. Baum, Robert L. Wright, Jr., Bryan C. Hendrix, Scott L. Battle, John M. Cleary
  • Patent number: 10385452
    Abstract: Systems, reagent support trays, particle suppression devices, and methods are disclosed. In one aspect, a system includes a vaporizer vessel having one or more interior walls enclosing an interior volume and a plurality of reagent support trays configured to be vertically stackable within the interior volume. Each of the plurality of reagent support trays is configured to be vertically stackable within the interior volume to form a stack of reagent support trays. One or more of the plurality of reagent support trays is configured to redirect a flow of a gas passing between adjacent reagent support trays in the stack of reagent support trays to cause the flow of gas to interact with the source reagent material in a particular reagent support tray before passing into a next of the plurality of reagent support trays in the stack of reagent support trays.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: August 20, 2019
    Assignee: ENTEGRIS, INC.
    Inventors: Bryan C. Hendrix, John N. Gregg, Scott L. Battle, Donn K. Naito, Kyle Bartosh, John M. Cleary, Sebum Cheon, Jordan Hodges
  • Publication number: 20190186003
    Abstract: The invention is directed to a vaporizer or ampoule assembly with an improved vaporizer vessel body and support tray assembly configuration located therein that together increase the vaporizable material utilization and uniformity.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 20, 2019
    Inventors: David James ELDRIDGE, John M. CLEARY, Jacob THOMAS, Scott L. BATTLE, Thomas CHATTERTON, John GREGG, Bryan C. HENDRIX, Thomas H. BAUM
  • Publication number: 20180044787
    Abstract: A solid source material is described for forming a tungsten-containing film. The solid source material is tungsten hexacarbonyl, wherein content of molybdenum is less than 1000 ppm. Such solid source material may be formed by a process including provision of particulate tungsten hexacarbonyl raw material of particles of size less than 5 mm, wherein particles of size greater than 1.4 mm are less than 15% of the particles, and wherein content of molybdenum is less than 1000 ppm, and sintering the particulate tungsten hexacarbonyl raw material at temperature below 100° C. to produce the solid source material as a sintered solid.
    Type: Application
    Filed: February 28, 2016
    Publication date: February 15, 2018
    Inventors: Thomas H. BAUM, Robert L. WRIGHT, Jr., Scott L. BATTLE, John M. CLEARY
  • Publication number: 20170342557
    Abstract: Vaporizers are described, suited for vaporizing a vaporizable solid source materials to form vapor for subsequent use, e.g., a deposition of metal from organometallic source material vapor on a substrate for manufacture of integrated circuitry, LEDs, photovoltaic panels, and the like. Methods are described of fabricating such vaporizers, including methods of reconfiguring up-flow vaporizers for down-flow operation to accommodate higher flow rate solid delivery of source material vapor in applications requiring same.
    Type: Application
    Filed: March 28, 2015
    Publication date: November 30, 2017
    Inventors: Thomas H. BAUM, Robert L. WRIGHT, Jr., Bryan C. HENDRIX, Scott L. BATTLE, John M. CLEARY
  • Publication number: 20170037511
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Application
    Filed: October 25, 2016
    Publication date: February 9, 2017
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Publication number: 20160369402
    Abstract: Cobalt precursors are described, having application for vapor deposition of cobalt on substrates, such as in atomic layer deposition (ALD) and chemical vapor deposition (CVD) processes for forming interconnects, capping structures, and bulk cobalt conductors, in the manufacture of integrated circuitry and thin film products.
    Type: Application
    Filed: February 19, 2015
    Publication date: December 22, 2016
    Inventors: Thomas H. Baum, Scott L. Battle, John M. Cleary, David W. Peters, Philip S.H. Chen
  • Publication number: 20150191819
    Abstract: Systems, reagent support trays, particle suppression devices, and methods are disclosed. In one aspect, a system includes a vaporizer vessel having one or more interior walls enclosing an interior volume and a plurality of reagent support trays configured to be vertically stackable within the interior volume. Each of the plurality of reagent support trays is configured to be vertically stackable within the interior volume to form a stack of reagent support trays. One or more of the plurality of reagent support trays is configured to redirect a flow of a gas passing between adjacent reagent support trays in the stack of reagent support trays to cause the flow of gas to interact with the source reagent material in a particular reagent support tray before passing into a next of the plurality of reagent support trays in the stack of reagent support trays.
    Type: Application
    Filed: May 31, 2013
    Publication date: July 9, 2015
    Inventors: Bryan C. Hendrix, John N. Gregg, Scott L. Battle, Donn K. Naito, Kyle Bartosh, John M. Cleary, Sebum Cheon, Jordan Hodges
  • Publication number: 20140329025
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Application
    Filed: July 19, 2014
    Publication date: November 6, 2014
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Patent number: 8821640
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: September 2, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Publication number: 20100255198
    Abstract: Apparatus and method for volatilizing a source reagent susceptible to particle generation or presence of particles in the corresponding source reagent vapor, in which such particle generation or presence is suppressed by structural or processing features of the vapor generation system. Such apparatus and method are applicable to liquid and solid source reagents, particularly solid source reagents such as metal halides, e.g., hafnium chloride. The source reagent in one specific implementation is constituted by a porous monolithic bulk form of the source reagent material. The apparatus and method of the invention are usefully employed to provide source reagent vapor for applications such as atomic layer deposition (ALD) and ion implantation.
    Type: Application
    Filed: August 31, 2007
    Publication date: October 7, 2010
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: John M. Cleary, Jose I. Arno, Bryan C. Hendrix, Donn Naito, Scott Battle, John N. Gregg, Michael J. Wodjenski, Chongying Xu
  • Patent number: 4204149
    Abstract: Electronic restoration of switching to an "off" condition at the end of a prescribed and controllable time interval, with an indication of termination being provided before the end of the interval. The electronic circuitry for controlling the switching can be substantially integrated to permit compact, small space installation in, for example, the housings of conventional mechanical switches.
    Type: Grant
    Filed: July 18, 1977
    Date of Patent: May 20, 1980
    Inventors: James J. Cleary, John M. Cleary
  • Patent number: 4015139
    Abstract: Switches of the kind formed by a controller with an actuator which is automatically restored to its "off" position at the end of a prescribed time interval and provides an indication shortly before the end of the interval. The controller may be manually energized or motor driven.
    Type: Grant
    Filed: May 6, 1975
    Date of Patent: March 29, 1977
    Inventors: John M. Cleary, John P. Mohrhauser
  • Patent number: RE30295
    Abstract: Switches of the kind formed by a controller with an actuator which is automatically restored to its "off" position at the end of a prescribed time interval and provides an indication shortly before the end of the interval. The controller may be manually energized or motor driven.
    Type: Grant
    Filed: February 27, 1978
    Date of Patent: June 3, 1980
    Inventors: John M. Cleary, John P. Mohrhuaser